umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The role of retrograde signals during plant stress responses
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
2018 (English)In: Journal of Experimental Botany, ISSN 0022-0957, E-ISSN 1460-2431, Vol. 69, no 11, p. 2783-2795Article, review/survey (Refereed) Published
Abstract [en]

Chloroplast and mitochondria not only provide the energy to the plant cell but due to the sensitivity of organellar processes to perturbations caused by abiotic stress, they are also key cellular sensors of environmental fluctuations. Abiotic stresses result in reduced photosynthetic efficiency and thereby reduced energy supply for cellular processes. Thus, in order to acclimate to stress, plants must re-program gene expression and cellular metabolism to divert energy from growth and developmental processes to stress responses. To restore cellular energy homeostasis following exposure to stress, the activities of the organelles must be tightly co-ordinated with the transcriptional re-programming in the nucleus. Thus, communication between the organelles and the nucleus, so-called retrograde signalling, is essential to direct the energy use correctly during stress exposure. Stress-triggered retrograde signals are mediated by reactive oxygen species and metabolites including beta-cyclocitral, MEcPP (2-C-methyl-D-erythritol 2,4-cyclodiphosphate), PAP (3'-phosphoadenosine 5'-phosphate), and intermediates of the tetrapyrrole biosynthesis pathway. However, for the plant cell to respond optimally to environmental stress, these stress-triggered retrograde signalling pathways must be integrated with the cytosolic stress signalling network. We hypothesize that the Mediator transcriptional co-activator complex may play a key role as a regulatory hub in the nucleus, integrating the complex stress signalling networks originating in different cellular compartments.

Place, publisher, year, edition, pages
Oxford University Press, 2018. Vol. 69, no 11, p. 2783-2795
Keywords [en]
Abiotic stress, energy metabolism, Mediator complex, photosynthesis, reactive oxygen species, retrograde signalling
National Category
Botany Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:umu:diva-148736DOI: 10.1093/jxb/erx481ISI: 000432691300004PubMedID: 29281071Scopus ID: 2-s2.0-85047545923OAI: oai:DiVA.org:umu-148736DiVA, id: diva2:1216368
Note

Special Issue: SI

Available from: 2018-06-11 Created: 2018-06-11 Last updated: 2018-06-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Crawford, TimLehotai, NóraStrand, Åsa
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Journal of Experimental Botany
BotanyBiochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 69 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf