umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multiband functional magnetic resonance imaging (fMRI) for functional connectivity assessments
Umeå University, Faculty of Science and Technology, Department of Physics.
2018 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

During resting state the brain exhibits synchronized activity within all major brain networks. Using blood oxygen level dependent (BOLD) resting state functional magnetic resonance imaging (fMRI) based detection it is possible to quantify the degree of correlation, connectivity, between regions of interest and assess information regarding the integrity of the inter-regional functional integration. A newly available multiband echo planar imaging (EPI) fMRI sequence allows for faster scan times which possibly allows us to better examine large-scale networks and increase the understanding of brain function/dysfunction. This thesis will assess how the newly developed sequence compares to a conventional EPI sequence for detecting resting state connectivity of canonical brain networks. The data acquisitions were made on a 3 Tesla scanner using a 32 channel head coil. The hypothesis was that the multiband sequence would produce a better result since it has faster sampling rate, thus more data points in its time-series to support the statistical analyses.

Using Pearson’s linear correlation between the average time-series (approximately 12 minutes long) within a seed-region and all voxels contained in the image volume, correlation maps where created for each of the eight participants using data normalized to Montreal Neurological Institute (MNI) space. The resting state networks (RSN) were then found by performing a one sample T-test on group level. Six seed-coordinates, based on literature, where used revealing the the homotopic connections in anterior Hippocampus, Motor cortex, Dorsal attention, Visual and the Default mode network (DMN) as well for an anterior-posterior connection in the DMN.

By comparing the maximum T-values within the regions for the RSN no systematic difference could be found between the multiband and conventional fMRI data. Further tests were conducted to evaluate if the sequences would differentiate in their results if the acquisition time was shortened, i.e shortening the time-series in the voxels. However no such difference could be established.Importantly, the results are specific to the 32 channel head coil used in the current study. Presumably recently available and improved coil designs could better exploit the multiband technique.

Place, publisher, year, edition, pages
2018.
National Category
Medical Image Processing Neurosciences
Identifiers
URN: urn:nbn:se:umu:diva-149906OAI: oai:DiVA.org:umu-149906DiVA, id: diva2:1228907
Subject / course
Examensarbete i teknisk fysik
Educational program
Master of Science Programme in Engineering Physics
Supervisors
Examiners
Available from: 2018-08-14 Created: 2018-06-29 Last updated: 2018-08-14Bibliographically approved

Open Access in DiVA

fulltext(9346 kB)76 downloads
File information
File name FULLTEXT01.pdfFile size 9346 kBChecksum SHA-512
7c3891211aa87ecc4f085db4844859cc82cd3241be4246771f0aa10929e9f3c4d9517743bbb94fb670d21c3257293107dd63b512950e3c7c0fccf8ae61a4c560
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Björnfot, Cecilia
By organisation
Department of Physics
Medical Image ProcessingNeurosciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 76 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 353 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf