umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Dialogue-Based Approach for Dealing with Uncertain and Conflicting Information in Medical Diagnosis
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0001-5984-5604
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2018 (Engelska)Ingår i: Autonomous Agents and Multi-Agent Systems, ISSN 1387-2532, E-ISSN 1573-7454, Vol. 32, nr 6, s. 861-885Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this paper, we propose a multi-agent framework to deal with situations involving uncertain or inconsistent information located in a distributed environment which cannot be combined into a single knowledge base. To this end, we introduce an inquiry dialogue approach based on a combination of possibilistic logic and a formal argumentation-based theory, where possibilistic logic is used to capture uncertain information, and the argumentation-based approach is used to deal with inconsistent knowledge in a distributed environment. We also modify the framework of earlier work, so that the system is not only easier to implement but also more suitable for educational purposes. The suggested approach is implemented in a clinical decision-support system in the domain of dementia diagnosis. The approach allows the physician to suggest a hypothetical diagnosis in a patient case, which is verified through the dialogue if sufficient patient information is present. If not, the user is informed about the missing information and potential inconsistencies in the information as a way to provide support for continuing medical education. The approach is presented, discussed, and applied to one scenario. The results contribute to the theory and application of inquiry dialogues in situations where the data are uncertain and inconsistent.

Ort, förlag, år, upplaga, sidor
Springer, 2018. Vol. 32, nr 6, s. 861-885
Nyckelord [en]
Multi-agent system, Inquiry dialogues, Possibilistic logic, Argumentation framework
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:umu:diva-150966DOI: 10.1007/s10458-018-9396-xISI: 000446664700004OAI: oai:DiVA.org:umu-150966DiVA, id: diva2:1240385
Tillgänglig från: 2018-08-21 Skapad: 2018-08-21 Senast uppdaterad: 2018-11-02Bibliografiskt granskad
Ingår i avhandling
1. Developing digital support for learning and diagnostic reasoning in clinical practice
Öppna denna publikation i ny flik eller fönster >>Developing digital support for learning and diagnostic reasoning in clinical practice
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The two main purposes of clinical decision-support systems (CDSSs) are to provide healthcare professionals decision-making support based on evidence-based medical knowledge, and a continuing medical education. This thesis focuses on both purposes and shows how fundamental theory in the field of artificial intelligence can be developed, adapted and implemented in a CDSS for supporting learning and diagnostic reasoning in clinical practice. The main research problems addressed in this thesis are how to represent and manage uncertain, incomplete, inconsistent and distributed knowledge in automated reasoning and decision-making with the clinicians in the loop, how to facilitate the knowledge engineering and maintenance process, and how to detect and support learning and skill development in CDSS users.

Research contributions include theories, methods, and algorithms based on possibilistic logic and formal argumentation for representing and managing uncertain, incomplete, inconsistent and distributed medical knowledge, and for supporting reasoning and decision-making when using a CDSS. The clinician is provided potentially conflicting arguments and their strength based on different diagnostic criteria and the available patient information in order to make an informed decision. The theoretical results were implemented in the Dementia Diagnosis and Management Support System - Web version (DMSS-W), in a multi-agent hypothesis-driven inquiry dialogue system, and in an inference engine serving as a module of ACKTUS.

CDSS maintenance is challenging since new knowledge about diseases and treatments are continuously developed. Typically, knowledge and software engineers are needed to bridge medical experts and CDSSs, leading to time-consuming system development. ACKTUS (Activity-Centered Knowledge and Interaction Tailored to Users) was, as part of this research, further developed as a generic web-based platform for knowledge management and end-user development of CDSSs. It includes the inference engine and a content management system that the medical expert can use to manage knowledge, design and evaluate CDSSs. A graphical user interface generator synchronizes the interface to the ontology serving as the knowledge base. ACKTUS was used for developing DMSS-W, and facilitated the system development and maintenance.

To offer person-tailored support for the clinician's learning, reasoning and decision-making, the CDSS design was based on theories of how novices and experts reason and make decisions. Pilot case studies involving physicians with different levels of expertise who applied DMSS-W in patient cases were conducted in clinical practice to explore methods for detecting skill levels and whether learning is taking place. The results indicated that the skill levels can be detected using the method. The novice was seen to develop reasoning strategies similar to an expert's, indicating that learning was taking place. In future work, tailored educational support will be developed, and evaluated using the methods.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2018. s. 49
Serie
Report / UMINF, ISSN 0348-0542 ; 18.09
Nyckelord
Clinical decision-support systems, knowledge representation, possibilistic logic, multi-agent systems, formal argumentation, ontology, automated decision making, inquiry dialogue, end-user development, continuing medical education, dementia
Nationell ämneskategori
Datorsystem
Identifikatorer
urn:nbn:se:umu:diva-150922 (URN)978-91-7601-918-4 (ISBN)
Disputation
2018-09-27, MA121, MIT-huset, Umeå, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-08-23 Skapad: 2018-08-20 Senast uppdaterad: 2018-08-21Bibliografiskt granskad

Open Access i DiVA

fulltext(3268 kB)70 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3268 kBChecksumma SHA-512
874151080cc00808a4d189d7fe2c4c00cfca4eaee3e8a102d633b22b96778d3216c1c6a0eb0def9397fcd38ff0536214fbf053987482fda990cdbe32bee43c16
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltexthttps://doi.org/10.1007/s10458-018-9396-x

Personposter BETA

Yan, Chunli

Sök vidare i DiVA

Av författaren/redaktören
Yan, ChunliLindgren, HelenaNieves, Juan Carlos
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
Autonomous Agents and Multi-Agent Systems
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 70 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 3282 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf