umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surface activation of graphene nanoribbons for oxygen reduction reaction by nitrogen doping and defect engineering: An ab initio study
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
2018 (English)In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 137, p. 349-357Article in journal (Refereed) Published
Abstract [en]

Introducing heteroatoms and creating structural defects on graphene is a common and rather successful strategy to transform its inert basal plane into an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR). However, the intricate atomic configuration of defective graphenes difficult their optimization as ORR electrocatalysts, where not only a large density of active sites is desirable, but also excellent electrical conductivity is required. Therefore, we used density functional theory to investigate the current-voltage characteristics and the catalytic active sites towards ORR of nitrogen-doped and defective graphene by using 8 zig-zag graphene nanoribbons as model systems. Detailed ORR catalytic activity maps are created for ten different systems showing the distribution of catalytic hot spots generated by each defect. Subsequently, the use of both current-voltage characteristics and catalytic activity maps allow to exclude inefficient systems that exhibit either low electrical conductivity or have adsorption energies far from optimal. Our study highlights the importance of considering not only the interaction energy of reaction intermediates to design electrocatalysts, but also the electrical conductivity of such configurations. We believe that this work is important for future experimental studies by providing insights on the use of graphene as a catalyst towards the ORR reaction. 

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD , 2018. Vol. 137, p. 349-357
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:umu:diva-151037DOI: 10.1016/j.carbon.2018.05.050ISI: 000440661700035Scopus ID: 2-s2.0-85047971117OAI: oai:DiVA.org:umu-151037DiVA, id: diva2:1245351
Available from: 2018-09-05 Created: 2018-09-05 Last updated: 2018-09-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Ekspong, JoakimBoulanger, NicolasGracia-Espino, Eduardo

Search in DiVA

By author/editor
Ekspong, JoakimBoulanger, NicolasGracia-Espino, Eduardo
By organisation
Department of Physics
In the same journal
Carbon
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 109 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf