umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pathway position constrains the evolution of an ecologically important pathway in aspens (Populus tremula L.)
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
2018 (English)In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 27, no 16, p. 3317-3330Article in journal (Refereed) Published
Abstract [en]

Many ecological interactions of aspens and their relatives (Populus spp.) are affected by products of the phenylpropanoid pathway synthesizing condensed tannins (CTs), whose production involves trade-offs with other ecologically important compounds and with growth. Genes of this pathway are candidates for investigating the role of selection on ecologically important, polygenic traits. We analysed sequences from 25 genes representing 10 steps of the CT synthesis pathway, which produces CTs used in defence and lignins used for growth, in 12 individuals of European aspen (Populus tremula). We compared these to homologs from P.trichocarpa, to a control set of 77 P. tremula genes, to genome-wide resequencing data and to RNA-seq expression levels, in order to identify signatures of selection distinct from those of demography. In Populus, pathway position exerts a strong influence on the evolution of these genes. Nonsynonymous diversity, divergence and allele frequency shifts (Tajima's D) were much lower than for synonymous measures. Expression levels were higher, and the direction of selection more negative, for upstream genes than for those downstream. Selective constraints act with increasing intensity on upstream genes, despite the presence of multiple paralogs in most gene families. Pleiotropy, expression level, flux control and codon bias appear to interact in determining levels and patterns of variation in genes of this pathway, whose products mediate a wide array of ecological interactions for this widely distributed species.

Place, publisher, year, edition, pages
Wiley-Blackwell, 2018. Vol. 27, no 16, p. 3317-3330
Keywords [en]
condensed tannins, E-R anticorrelation, gene expression, negative selection, pathway pleiotropy, plant defence
National Category
Bioinformatics and Systems Biology
Identifiers
URN: urn:nbn:se:umu:diva-151564DOI: 10.1111/mec.14785ISI: 000442219600010PubMedID: 29972878OAI: oai:DiVA.org:umu-151564DiVA, id: diva2:1246864
Funder
Swedish Research CouncilAvailable from: 2018-09-10 Created: 2018-09-10 Last updated: 2018-09-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Ingvarsson, Pär K.

Search in DiVA

By author/editor
Ingvarsson, Pär K.
By organisation
Department of Ecology and Environmental Sciences
In the same journal
Molecular Ecology
Bioinformatics and Systems Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 73 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf