umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the use of a novel nanoporous polyethylene (nanoPE) passive cooling material for personal thermal comfort management under uniform indoor environments
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (Building Energy Efficiency)
2018 (English)In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 145, p. 85-95Article in journal (Refereed) Published
Abstract [en]

Passive cooling materials such as specially designed nanoporous microfibers are nearly transparent to infrared thermal radiation emitted from the human body. Hence, such passive cooling materials have the potential to help indoor occupants attain thermal comfort through regulating the radiative body heat in indoor conditions. In this work, a regular fit women's business shirt made of the nanoporous polyethylene (nanoPE) material was designed and its cooling performance under four uniform indoor conditions was examined. A cotton shirt (CO) with the same size and pattern as the nanoPE shirt was designed and selected as the control. Eighteen female participants underwent eight 80-min trials at four indoor temperatures: 23, 25, 27 and 29 °C. Trials were performed in simulated indoor environments where RH = 60% and the air velocity was kept below 0.10 m/s. Results have demonstrated that participants had significantly lower mean skin temperatures, mean upper torso temperatures and forearm temperatures in nanoPE as compared to CO at 23, 25 and 27 °C. Participants showed the maximum satisfaction with the thermal environment while wearing the CO clothing at 25 °C, whereas they were mostly satisfied with the thermal environment while wearing the nanoPE clothing at 27 °C. Thus, the acceptable air conditioning setpoint temperature could be extended by 1.5 °C from 25.5 to 27 °C while using the nanoPE clothing and thereby, this saves about 9–15% cooling energy. Finally, it was concluded that the nanoPE passive cooling clothing contributes to enhancing indoor thermal comfort under uniform environments and saving significant cooling energy.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 145, p. 85-95
Keywords [en]
Passive cooling, Acceptable operative temperature, Perceptual response, Skin temperature, Personal comfort device, Energy saving
National Category
Building Technologies
Identifiers
URN: urn:nbn:se:umu:diva-151882DOI: 10.1016/j.buildenv.2018.09.021ISI: 000448091500008OAI: oai:DiVA.org:umu-151882DiVA, id: diva2:1248478
Available from: 2018-09-14 Created: 2018-09-14 Last updated: 2018-12-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Yang, Bin

Search in DiVA

By author/editor
Yang, Bin
By organisation
Department of Applied Physics and Electronics
In the same journal
Building and Environment
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 94 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf