In terrestrial environments, cold-blooded animals can attain higher bodytemperatures by sun basking, and thereby potentially benefit from broaderniches, improved performance and higher fitness. The higher heat capacityand thermal conductivity of water compared with air have been universallyassumed to render heat gain from sun basking impossible for aquaticectotherms, such that their opportunities to behaviourally regulate body temperatureare largely limited to choosing warmer or colder habitats. Here wechallenge this paradigm. Using physical modelswe first showthat submergedobjects exposed to natural sunlight attain temperatures in excess of ambientwater. We next demonstrate that free-ranging carp (Cyprinus carpio) canincrease their body temperature during aquatic sun basking close to thesurface. The temperature excess gained by basking was larger in dark thanin pale individuals, increased with behavioural boldness, and was associatedwith faster growth. Overall, our results establish aquatic sun basking as a novelecologically significant mechanism for thermoregulation in fish. The discoveryof this previously overlooked process has practical implications for aquaculture,offers alternative explanations for behavioural and phenotypicadaptations, will spur future research in fish ecology, and calls for modificationsof models concerning climate change impacts on biodiversity inmarine and freshwater environments.