umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices
Umeå University, Faculty of Science and Technology, Department of Physics.
2018 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 149, no 12, article id 124506Article in journal (Refereed) Published
Abstract [en]

The effect of deuteration on the thermal conductivity kappa of water, crystalline ice, and amorphous ices was studied using the pressure induced amorphization of hexagonal ice, ice Ih, to obtain the deuterated, D2O, forms of low-density amorphous (LDA), high-density amorphous (HDA), and very-high density amorphous (VHDA) ices. Upon deuteration, kappa of ice Ih decreases between 3% and 4% in the 100-270 K range at ambient pressure, but the effect diminishes on densification at 130 K and vanishes just prior to amorphization near 0.8 GPa. The unusual negative value of the isothermal density rho dependence of kappa for ice Ih, g = (d ln kappa/d ln rho)(T) = -4.4, is less so for deuterated ice: g = -3.8. In the case of the amorphous ices and liquid water, kappa of water decreases by 3.5% upon deuteration at ambient conditions, whereas K of HDA and VHDA ices instead increases by up to 5% for pressures up to 1.2 GPa at 130 K, despite HDA's and VHDA's structural similarities with water. The results are consistent with significant heat transport by librational modes in amorphous ices as well as water, and that deuteration increases phonon-phonon scattering in crystalline ice. Heat transport by librational modes is more pronounced in D2O than in H2O at low temperatures due to a deuteration-induced red-shift of librational mode frequencies. Moreover, the results show that kappa of deuterated LDA ice is 4% larger than that of normal LDA at 130 K, and both forms display an unusual temperature dependence of kappa, which is reminiscent of that for crystals (kappa similar to T (-1)), and a unique negative pressure dependence of kappa, which likely is linked to local-order structural similarities to ice Ih. 

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2018. Vol. 149, no 12, article id 124506
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:umu:diva-152894DOI: 10.1063/1.5050172ISI: 000446120700023PubMedID: 30278676OAI: oai:DiVA.org:umu-152894DiVA, id: diva2:1259789
Funder
Magnus Bergvall FoundationCarl Tryggers foundation Available from: 2018-10-31 Created: 2018-10-31 Last updated: 2018-10-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Andersson, Ove

Search in DiVA

By author/editor
Andersson, Ove
By organisation
Department of Physics
In the same journal
Journal of Chemical Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 112 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf