Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the almost everywhere differentiability of the metric projection on closed sets in lp(ℝn), 2 < p < ∞
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2018 (English)In: Czechoslovak Mathematical Journal, ISSN 0011-4642, E-ISSN 1572-9141, Vol. 68, no 143, p. 943-951Article in journal (Refereed) Published
Abstract [en]

Let F be a closed subset of ℝn and let P(x) denote the metric projection (closest point mapping) of x ∈ ℝn onto F in lp-norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in ℝn in the Euclidean case p = 2. We consider the case 2 < p < ∞ and prove that the ith component Pi(x) of P(x) is differentiable a.e. if Pi(x) 6= xi and satisfies Hölder condition of order 1/(p−1) if Pi(x) = xi.

Place, publisher, year, edition, pages
Berlin/Heidelberg: Springer, 2018. Vol. 68, no 143, p. 943-951
Keywords [en]
normed space, uniform convexity, closed set, metric projection, l(p)-space, Frechet differential, Lipschitz condition
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:umu:diva-153050DOI: 10.21136/CMJ.2018.0038-17ISI: 000451778500004Scopus ID: 2-s2.0-85048746434OAI: oai:DiVA.org:umu-153050DiVA, id: diva2:1260615
Available from: 2018-11-04 Created: 2018-11-04 Last updated: 2023-03-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sjödin, Tord

Search in DiVA

By author/editor
Sjödin, Tord
By organisation
Department of Mathematics and Mathematical Statistics
In the same journal
Czechoslovak Mathematical Journal
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 208 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf