umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ConvNet Pap Smear Single Cell Image Classifier - Deep Learning for automatic image-based diagnosis of histological cervix pap smears
Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
2018 (English)Independent thesis Basic level (professional degree), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2018. , p. 15
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:umu:diva-153743OAI: oai:DiVA.org:umu-153743DiVA, id: diva2:1266544
External cooperation
Västerbottens läns landsting
Educational program
Medical Programme
Supervisors
Examiners
Available from: 2019-02-15 Created: 2018-11-28 Last updated: 2019-02-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
Radiation Physics
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf