umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Long-Term climate regime modulates the impact of short-term climate variability on decomposition in alpine grassland soils
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Ecology and Biodiversity Group and Plant Ecophysiology Group, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
2018 (English)In: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 21, no 8, p. 1580-1592Article in journal (Refereed) Published
Abstract [en]

Decomposition of plant litter is an important process in the terrestrial carbon cycle and makes up approximately 70% of the global carbon flux from soils to the atmosphere. Climate change is expected to have significant direct and indirect effects on the litter decomposition processes at various timescales. Using the TeaBag Index, we investigated the impact on decomposition of short-term direct effects of temperature and precipitation by comparing temporal variability over years, versus long-term climate impacts that incorporate indirect effects mediated through environmental changes by comparing sites along climatic gradients. We measured the initial decomposition rate (k) and the stabilization factor (S; amount of labile litter stabilizing) across a climate grid combining three levels of summer temperature (6.5-10.5 degrees C) with four levels of annual precipitation (600-2700 mm) in three summers with varying temperature and precipitation. Several (a)biotic factors were measured to characterize environmental differences between sites. Increased temperatures enhanced k, whereas increased precipitation decreased k across years and climatic regimes. In contrast, S showed diverse responses to annual changes in temperature and precipitation between climate regimes. Stabilization of labile litter fractions increased with temperature only in boreal and sub-alpine sites, while it decreased with increasing precipitation only in sub-alpine and alpine sites. Environmental factors such as soil pH, soil C/N, litter C/N, and plant diversity that are associated with long-term climate variation modulate the response of k and S. This highlights the importance of long-term climate in shaping the environmental conditions that influences the response of decomposition processes to climate change.

Place, publisher, year, edition, pages
Springer, 2018. Vol. 21, no 8, p. 1580-1592
Keywords [en]
decomposition, climate change, temperature, precipitation, litter bag, annual variability, grassland, tea bag index
National Category
Climate Research
Identifiers
URN: urn:nbn:se:umu:diva-154028DOI: 10.1007/s10021-018-0241-5ISI: 000450919700007OAI: oai:DiVA.org:umu-154028DiVA, id: diva2:1272859
Funder
Swedish Research CouncilAvailable from: 2018-12-20 Created: 2018-12-20 Last updated: 2018-12-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Sarneel, Judith M

Search in DiVA

By author/editor
Sarneel, Judith M
By organisation
Department of Ecology and Environmental Sciences
In the same journal
Ecosystems (New York. Print)
Climate Research

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 388 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf