umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China
Umeå University, Faculty of Science and Technology, Department of Chemistry.ORCID iD: 0000-0001-9570-8738
Show others and affiliations
2018 (English)In: Water Research, ISSN 0043-1354, E-ISSN 1879-2448, Vol. 146, p. 146-158Article in journal (Refereed) Published
Abstract [en]

The origin and composition of dissolved organic matter (DOM) in porewater of lake sediments is intricate and decisive for fate of pollutants including mercury (Hg). While there are many reports on the relationship between dissolved organic carbon concentration (DOC) and mercury (Hg) concentrations in aquatic systems, there are few in which DOM compositional properties, that may better explain the fate of Hg, have been the focus. In this study, porewaters from sediments of three lakes, Caihai Lake (CH), Hongfeng Lake (HF) and Wujiangdu Lake (WJD), all located in southwest China, were selected to test the hypothesis that DOM optical properties control the fate of Hg in aquatic ecosystems. Porewater DOM was extracted and characterized by UV-Vis absorption and fluorescence spectroscopy. A two end-member (autochthonous and allochthonous DOM) mixing model was used to unveil the origin of DOM in porewaters of the three lakes. Our results show a higher input of terrestrial DOM in the pristine lake CH, as compared to lakes HF and WJD lakes, which were both influenced by urban environments and enriched in autochthonous DOM. While the relationships between the concentrations of DOC and the different chemical forms of Hg forms were quite inconsistent, we found important links between specific DOM components and the fate of Hg in the three lakes. In particular, our results suggest that allochthonous, terrestrial DOM inhibits Hg(II) availability for Hg methylating micro-organisms. In contrast, autochthonous DOM seems to have been stimulated MeHg formation, likely by enhancing the activity of microbial communities. Indeed, DOM biodegradation experiments revealed that differences in the microbial activity could explain the variation in the concentration of MeHg. While relationships between concentrations of DOC and Hg vary among different sites and provide little information about Hg cycling, we conclude that the transport and transformation of Hg (e.g. the methylation process) are more strongly linked to DOM chemical composition and reactivity.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 146, p. 146-158
Keywords [en]
Dissolved organic matter, Mercury, Methylmercury, Lake porewater, Sediment, Characterization
National Category
Environmental Sciences Oceanography, Hydrology and Water Resources Environmental Biotechnology
Identifiers
URN: urn:nbn:se:umu:diva-154899DOI: 10.1016/j.watres.2018.08.054ISI: 000452565400014PubMedID: 30243058OAI: oai:DiVA.org:umu-154899DiVA, id: diva2:1275596
Available from: 2019-01-07 Created: 2019-01-07 Last updated: 2019-01-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Björn, Erik

Search in DiVA

By author/editor
Bravo, Andrea G.Björn, Erik
By organisation
Department of Chemistry
In the same journal
Water Research
Environmental SciencesOceanography, Hydrology and Water ResourcesEnvironmental Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 81 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf