umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stable Sulfur‐Intercalated 1T′ MoS2 on Graphitic Nanoribbons as Hydrogen Evolution Electrocatalyst
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Show others and affiliations
2018 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, no 46, article id 1802744Article in journal (Refereed) Published
Abstract [en]

The metastable 1T′ polymorph of molybdenum disulfide (MoS2) has shown excellent catalytic activity toward the hydrogen evolution reaction (HER) in water‐splitting applications. Its basal plane exhibits high catalytic activity comparable to the edges in 2H MoS2 and noble metal platinum. However, the production and application of this polymorph are limited by its lower energetic stability compared to the semiconducting 2H MoS2 phase. Here, the production of stable intercalated 1T′ MoS2 nanosheets attached on graphitic nanoribbons is reported. The intercalated 1T′ MoS2 exhibits a stoichiometric S:Mo ratio of 2.3 (±0.1):1 with an expanded interlayer distance of 10 Å caused by a sulfur‐rich intercalation agent and is stable at room temperature for several months even after drying. The composition, structure, and catalytic activity toward HER are investigated both experimentally and theoretically. It is concluded that the 1T′ MoS2 phase is stabilized by the intercalated agents, which further improves the basal planes′ catalytic activity toward HER.

Place, publisher, year, edition, pages
WILEY-VCH VERLAG GMBH , 2018. Vol. 28, no 46, article id 1802744
Keywords [en]
DFT calculations, hydrogen evolution reaction, intercalation, MoS2, transition metal chalcogenides
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:umu:diva-154948DOI: 10.1002/adfm.201802744ISI: 000449887300019OAI: oai:DiVA.org:umu-154948DiVA, id: diva2:1275999
Available from: 2019-01-07 Created: 2019-01-07 Last updated: 2019-01-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Ekspong, JoakimSandström, RobinWågberg, ThomasGracia-Espino, Eduardo

Search in DiVA

By author/editor
Ekspong, JoakimSandström, RobinWågberg, ThomasGracia-Espino, Eduardo
By organisation
Department of Physics
In the same journal
Advanced Functional Materials
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf