umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fabrication of microporous layer - free hierarchical gas diffusion electrode as a low Pt-loading PEMFC cathode by direct growth of helical carbon nanofibers
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0002-6830-2174
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0002-5210-2645
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 8, nr 72, s. 41566-41574Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Improving interfacial contact between each component in the proton exchange membrane fuel cell (PEMFC) can lead to a significant increase in power density and Pt utilization. In this work, the junction between the catalyst layer and gas diffusion layer (GDL) is greatly enhanced through direct attachment of helical carbon nanofibers, giving rise to a hierarchical structure within the electrical interconnections. The alternative novel GDL is produced by spraying a thin layer of Pd2C60 precursor on commercial carbon paper, followed by chemical vapor deposition growth resulting in a surface morphology of well-attached nanofibers surrounding the microfibers present in the commercial carbon paper. Subsequent solvothermal deposition of platinum nanoparticles allowed evaluation of its suitability as gas diffusion electrode in cathodic H-2/O-2 PEMFC environment. A combination of lowered charge transfer resistance and enhanced Pt-utilization is attributed to its unique wire-like appearance and its robust properties. The fabricated microporous layer - free GDL is suitable for relatively aggressive membrane electrode assembly fabrication procedures and is produced by industrially favorable techniques, rendering it capable of efficiently supporting small amounts of precious metal catalyst nanoparticles in various PEM applications.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2018. Vol. 8, nr 72, s. 41566-41574
Nationell ämneskategori
Materialkemi
Identifikatorer
URN: urn:nbn:se:umu:diva-155124DOI: 10.1039/c8ra07569gISI: 000453914300053OAI: oai:DiVA.org:umu-155124DiVA, id: diva2:1276538
Forskningsfinansiär
KempestiftelsernaEnergimyndighetenVetenskapsrådetTillgänglig från: 2019-01-08 Skapad: 2019-01-08 Senast uppdaterad: 2019-04-29Bibliografiskt granskad
Ingår i avhandling
1. Innovations in nanomaterials for proton exchange membrane fuel cells
Öppna denna publikation i ny flik eller fönster >>Innovations in nanomaterials for proton exchange membrane fuel cells
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Utveckling av nanomaterial för polymerelektrolytbränsleceller
Abstract [en]

Hydrogen technologies are rapidly receiving increased attention as it offers a renewable energy alternative to the current petroleum-based fuel infrastructure, considering that continued large-scale use of such fossil fuels will lead to disastrous impacts on our environment. The proton exchange membrane fuel cell should play a significant role in a hydrogen economy since it enables convenient and direct conversion of hydrogen into electricity, thus allowing the use of hydrogen in applications particularly suited for the transportation industry. To fully realize this, multiple engineering challenges as well as development of advanced nanomaterials must however be addressed.

In this thesis, we present discoveries of new innovative nanomaterials for proton exchange membrane fuel cells by targeting the entire membrane electrode assembly. Conceptually, we first propose new fabrication techniques of gas diffusion electrodes based on helical carbon nanofibers, where an enhanced three-phase boundary was noted in particular for hierarchical structures. The cathode catalyst, responsible for facilitating the sluggish oxygen reduction reaction, was further improved by the synthesis of platinum-based nanoparticles with an incorporated secondary metal (iron, yttrium and cobalt). Here, both solvothermal and high-temperature microwave syntheses were employed. Catalytic activities were improved compared to pure platinum and could be attributed to favorably shifted oxygen adsorption energies as a result of successful incorporation of the non-precious metal. As best exemplified by platinum-iron nanoparticles, the oxygen reduction reaction was highly sensitive to both metal composition and the type of crystal structure. Finally, a proton exchange membrane based on fluorine and sulfonic acid functionalized graphene oxide was prepared and tested in hydrogen fuel cell conditions, showing improvements such as lowered hydrogen permeation and better structural stability. Consequently, we have demonstrated that there is room for improvement of multiple components, suggesting that more powerful fuel cells can likely be anticipated in the future.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2019. s. 88
Nyckelord
Fuel Cells, Membrane Electrode Assembly, Oxygen Reduction Reaction, Platinum alloy catalyst, Nanoparticles, Gas Diffusion Electrode, Proton Exchange Membrane
Nationell ämneskategori
Energisystem Nanoteknik Annan materialteknik Annan kemiteknik Den kondenserade materiens fysik
Forskningsämne
materialvetenskap; fasta tillståndets fysik
Identifikatorer
urn:nbn:se:umu:diva-158501 (URN)978-91-7855-044-9 (ISBN)
Disputation
2019-05-28, N460, Naturvetarhuset, Umeå, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-05-07 Skapad: 2019-04-29 Senast uppdaterad: 2019-05-06Bibliografiskt granskad

Open Access i DiVA

fulltext(2606 kB)85 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2606 kBChecksumma SHA-512
26b22373601e91cc20c6c3fd4a48dbdd8e96a5bce76e6314c4a0859abad618b4004e908eb86b2c3bfecc272b828d360aaf4ba9df6d5eca9030f1c2970aa5174d
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Sandström, RobinEkspong, JoakimAnnamalai, AlagappanSharifi, TivaKlechikov, AlexeyWågberg, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Sandström, RobinEkspong, JoakimAnnamalai, AlagappanSharifi, TivaKlechikov, AlexeyWågberg, Thomas
Av organisationen
Institutionen för fysik
I samma tidskrift
RSC Advances
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 85 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 137 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf