umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Northern green algae have the capacity to remove active pharmaceutical ingredients
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
2019 (English)In: Ecotoxicology and Environmental Safety, ISSN 0147-6513, E-ISSN 1090-2414, Vol. 170, p. 644-656Article in journal (Refereed) Published
Abstract [en]

Eight recently isolated microalgal species from Northern Sweden and the culture collection strain Scenedesmus obliquus RISE (UTEX 417) were tested for their ability to remove 19 pharmaceuticals from growth medium upon cultivation in short light path, flat panel photobioreactors. While the growth of one algal species, Chlorellasorokiniana B1-1, was completely inhibited by the addition of pharmaceuticals, and the one of Scenedesmus sp. B2-2 was strongly inhibited, the other algal strains grew well and produced biomass.

In general, lipophilic compounds were removed highly efficient from the culture medium by the microalgae (>70% in average within 2 days). The most lipophilic compounds Biperiden, Trihexyphenidyl, Clomipramine and Amitriptyline significantly accumulated in the biomass of most algal species, with a positive correlation between accumulation and their total biomass content. More persistent in the growth medium were hydrophilic compounds like Caffeine, Fluconazole, Trimetoprim, Codeine, Carbamazepin, Oxazepam and Tramadol, which were detected in amounts of above 60% in average after algal treatment.

While Coelastrella sp. 3–4 and Coelastrum astroideum RW10 were most efficient to accumulate certain compounds in their biomass, two algae species, Chlorella vulgaris13-1 and Chlorella saccharophila RNY, were not only highly efficient in removing all 19 pharmaceuticals from the growth medium within 12 days, at the same time only small amounts of these compounds accumulated in their biomass allowing its further use. Chlorella vulgaris 13-1 was able to remove most compounds within 6 days of growth, while Chlorella saccharophila RNY needed 8–10 days.”Wild” Nordic microalgae therefore are able to remove active pharmaceutical ingredients, equally or more efficient than the investigated culture collection strain, thereby demonstrating their possible use in sustainable wastewater reclamation in Nordic conditions.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 170, p. 644-656
Keywords [en]
Pharmaceuticals, Green microalgae, Photodegradation, Removal efficiency
National Category
Ecology
Identifiers
URN: urn:nbn:se:umu:diva-156578DOI: 10.1016/j.ecoenv.2018.12.032ISI: 000456890700078PubMedID: 30579165OAI: oai:DiVA.org:umu-156578DiVA, id: diva2:1291093
Funder
Swedish Energy Agency, 2013-006259Swedish Energy Agency, 38239-1Swedish Research Council Formas, 942-2015-92Swedish Research Council Formas, 213-2014-1504VINNOVA, 2017-03301Available from: 2019-02-22 Created: 2019-02-22 Last updated: 2019-02-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Gojkovic, ZivanLindberg, RichardTysklind, MatsFunk, Christiane

Search in DiVA

By author/editor
Gojkovic, ZivanLindberg, RichardTysklind, MatsFunk, Christiane
By organisation
Department of Chemistry
In the same journal
Ecotoxicology and Environmental Safety
Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf