umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Compositional Evaluation of Coreduced Fe-Pt Metal Acetylacetonates as PEM Fuel Cell Cathode Catalyst
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0002-6830-2174
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.ORCID-id: 0000-0003-0324-2788
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0002-5080-8273
2018 (Engelska)Ingår i: ACS Applied Energy Materials, ISSN 2574-0962, Vol. 1, nr 12, s. 7106-7115Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Platinum iron nanoparticles were produced by solvothermal coreduction of organic Fe and Pt precursor compounds and supported on conventional Vulcan XC 72. Evaluation of oxygen reduction performance reveals a highly active surface with up to 5 times the specific activity of commercial Pt Vulcan measured in O-2-saturated 0.1 M HClO4. A particle size of 5.5 nm for the best performing sample, produced from an initial metal ratio of 1:1, provided 28% higher mass activity than the commercial reference. Membrane electrode assemblies, optimized for both H-2/O-2 and direct formic acid fuel cells, were produced, and the PEM fuel cell cathodic performance displayed results with similar enhancements as its ex situ measured mass activity, although a delamination of the catalyst layer from the membrane could be observed even when employing a hot-pressing procedure during MEA fabrication. Physical characterizations including X-ray photoelectron spectroscopy and in situ X-ray diffraction reveal oxidized states of Fe incorporated into the disordered face-centered cubic Pt nanoparticles, supported by composition-dependent morphological changes as observed by transmission electron microscopy. The provided insight into fuel cell performance as well as CO-oxidation attributes are expected to assist in selecting suitable applications and operating conditions for such FePt type nanoparticles.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2018. Vol. 1, nr 12, s. 7106-7115
Nyckelord [en]
platinum iron nanoparticles, proton exchange membrane fuel cell, oxygen reduction reaction, solvothermal coreduction, membrane electrode assembly, hydrogen energy
Nationell ämneskategori
Materialkemi Oorganisk kemi
Identifikatorer
URN: urn:nbn:se:umu:diva-156900DOI: 10.1021/acsaem.8b01536ISI: 000458706800053OAI: oai:DiVA.org:umu-156900DiVA, id: diva2:1295058
Forskningsfinansiär
Vetenskapsrådet, 2017-04862Energimyndigheten, 45419-1Tillgänglig från: 2019-03-09 Skapad: 2019-03-09 Senast uppdaterad: 2019-04-29Bibliografiskt granskad
Ingår i avhandling
1. Innovations in nanomaterials for proton exchange membrane fuel cells
Öppna denna publikation i ny flik eller fönster >>Innovations in nanomaterials for proton exchange membrane fuel cells
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Utveckling av nanomaterial för polymerelektrolytbränsleceller
Abstract [en]

Hydrogen technologies are rapidly receiving increased attention as it offers a renewable energy alternative to the current petroleum-based fuel infrastructure, considering that continued large-scale use of such fossil fuels will lead to disastrous impacts on our environment. The proton exchange membrane fuel cell should play a significant role in a hydrogen economy since it enables convenient and direct conversion of hydrogen into electricity, thus allowing the use of hydrogen in applications particularly suited for the transportation industry. To fully realize this, multiple engineering challenges as well as development of advanced nanomaterials must however be addressed.

In this thesis, we present discoveries of new innovative nanomaterials for proton exchange membrane fuel cells by targeting the entire membrane electrode assembly. Conceptually, we first propose new fabrication techniques of gas diffusion electrodes based on helical carbon nanofibers, where an enhanced three-phase boundary was noted in particular for hierarchical structures. The cathode catalyst, responsible for facilitating the sluggish oxygen reduction reaction, was further improved by the synthesis of platinum-based nanoparticles with an incorporated secondary metal (iron, yttrium and cobalt). Here, both solvothermal and high-temperature microwave syntheses were employed. Catalytic activities were improved compared to pure platinum and could be attributed to favorably shifted oxygen adsorption energies as a result of successful incorporation of the non-precious metal. As best exemplified by platinum-iron nanoparticles, the oxygen reduction reaction was highly sensitive to both metal composition and the type of crystal structure. Finally, a proton exchange membrane based on fluorine and sulfonic acid functionalized graphene oxide was prepared and tested in hydrogen fuel cell conditions, showing improvements such as lowered hydrogen permeation and better structural stability. Consequently, we have demonstrated that there is room for improvement of multiple components, suggesting that more powerful fuel cells can likely be anticipated in the future.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2019. s. 88
Nyckelord
Fuel Cells, Membrane Electrode Assembly, Oxygen Reduction Reaction, Platinum alloy catalyst, Nanoparticles, Gas Diffusion Electrode, Proton Exchange Membrane
Nationell ämneskategori
Energisystem Nanoteknik Annan materialteknik Annan kemiteknik Den kondenserade materiens fysik
Forskningsämne
materialvetenskap; fasta tillståndets fysik
Identifikatorer
urn:nbn:se:umu:diva-158501 (URN)978-91-7855-044-9 (ISBN)
Disputation
2019-05-28, N460, Naturvetarhuset, Umeå, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-05-07 Skapad: 2019-04-29 Senast uppdaterad: 2019-05-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Sandström, RobinHu, GuangzhiWågberg, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Sandström, RobinHu, GuangzhiWågberg, Thomas
Av organisationen
Institutionen för fysik
MaterialkemiOorganisk kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 86 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf