umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An all-small-molecule organic solar cell derived from naphthalimide for solution-processed high-efficiency nonfullerene acceptors
Umeå University, Faculty of Science and Technology, Department of Chemistry.ORCID iD: 0000-0001-5746-017x
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2019 (English)In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, no 3, p. 709-717Article in journal (Refereed) Published
Abstract [en]

Two small molecules BYG-1 and BYG-2 with fluorene donor and benzothiadiazole acceptor units connected to the terminal naphthamide group via ethyne linker were designed and synthesized. In this work we have discussed the effect of fluorine atoms connected with electron withdrawing benzothiadiazole unit to the fluorene core (BYG-1). In this study, we have fabricated solar cells with small-molecular donor and acceptor materials in the device architecture of bulk-heterojunction, using highly conjugated BYG-1 and BYG-2 as electron acceptors along with an appropriate small molecule donor (SMD). After improving the device architecture of the active layer using a suitable donor-to-acceptor weight ratio with solvent vapour annealing, we achieved power conversion efficiencies of 8.67% and 7.12% for BYG-1 and BYG-2, respectively. The superior photovoltaic performance of the fluorine-substituted BYG-1 can be attributed to its higher crystallinity, more balanced charge transport mobilities and efficient exciton dissociation.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2019. Vol. 7, no 3, p. 709-717
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-156893DOI: 10.1039/c8tc05692gISI: 000458780300026OAI: oai:DiVA.org:umu-156893DiVA, id: diva2:1295213
Available from: 2019-03-11 Created: 2019-03-11 Last updated: 2019-03-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Revoju, SrikanthEliasson, Bertil

Search in DiVA

By author/editor
Revoju, SrikanthEliasson, Bertil
By organisation
Department of Chemistry
In the same journal
Journal of Materials Chemistry C
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 77 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf