umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synchrotron FTIR and Raman spectroscopy provide unique spectral fingerprints for Arabidopsis floral stem vascular tissues
Show others and affiliations
2019 (English)In: Journal of Experimental Botany, ISSN 0022-0957, E-ISSN 1460-2431, Vol. 70, no 3, p. 871-883Article in journal (Refereed) Published
Abstract [en]

Cell walls are highly complex structures that are modified during plant growth and development. For example, the development of phloem and xylem vascular cells, which participate in the transport of sugars and water as well as providing support, can be influenced by cell-specific wall composition. Here, we used synchrotron radiation-based Fourier-transform infrared (SR-FTIR) and Raman spectroscopy to analyse the cell wall composition of floral stem vascular tissues of wild-type Arabidopsis and the double-mutant sweet11-1 sweet12-1, which has impaired sugar transport. The SR-FTIR spectra showed that in addition to modified xylem cell wall composition, phloem cell walls in the double-mutant line were characterized by modified hemicellulose composition. Combining Raman spectroscopy with a classification and regression tree (CART) method identified combinations of Raman shifts that could distinguish xylem vessels and fibers. In addition, the disruption of the SWEET11 and SWEET12 genes impacted on xylem wall composition in a cell-specific manner, with changes in hemicelluloses and cellulose observed at the xylem vessel interface. These results suggest that the facilitated transport of sugars by transporters that exist between vascular parenchyma cells and conducting cells is important in ensuring correct phloem and xylem cell wall composition.

Place, publisher, year, edition, pages
Oxford University Press, 2019. Vol. 70, no 3, p. 871-883
Keywords [en]
Arabidopsis, CART method, cell wall, floral stem, FTIR, multivariate analysis, phloem, Raman spectroscopy, synchrotron radiation, xylem
National Category
Botany
Identifiers
URN: urn:nbn:se:umu:diva-157225DOI: 10.1093/jxb/ery396ISI: 000459350700014PubMedID: 30407539OAI: oai:DiVA.org:umu-157225DiVA, id: diva2:1297693
Available from: 2019-03-20 Created: 2019-03-20 Last updated: 2019-03-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Bellini, C.

Search in DiVA

By author/editor
Bellini, C.
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Journal of Experimental Botany
Botany

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf