umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins
Show others and affiliations
2019 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 116, no (15), p. 7278-7287Article in journal (Refereed) Published
Abstract [en]

Mucin-domain glycoproteins are found in nearly every tissue of the human body, and are important in biological processes ranging from embryogenesis to cancer. Because there are few tools to study mucin domains, their biological functions at the molecular scale remain unclear. Here, we help address a hurdle to the study of mucin-domain glycoproteins by characterizing a bacterial protease with selectivity for mucins. This mucinase selectively removes native mucins from cell surfaces and cuts them into fragments amenable to analysis.Mucin domains are densely O-glycosylated modular protein domains that are found in a wide variety of cell surface and secreted proteins. Mucin-domain glycoproteins are known to be key players in a host of human diseases, especially cancer, wherein mucin expression and glycosylation patterns are altered. Mucin biology has been difficult to study at the molecular level, in part, because methods to manipulate and structurally characterize mucin domains are lacking. Here, we demonstrate that secreted protease of C1 esterase inhibitor (StcE), a bacterial protease from Escherichia coli, cleaves mucin domains by recognizing a discrete peptide- and glycan-based motif. We exploited StcE’s unique properties to improve sequence coverage, glycosite mapping, and glycoform analysis of recombinant human mucins by mass spectrometry. We also found that StcE digests cancer-associated mucins from cultured cells and from ascites fluid derived from patients with ovarian cancer. Finally, using StcE, we discovered that sialic acid-binding Ig-type lectin-7 (Siglec-7), a glycoimmune checkpoint receptor, selectively binds sialomucins as biological ligands, whereas the related receptor Siglec-9 does not. Mucin-selective proteolysis, as exemplified by StcE, is therefore a powerful tool for the study of mucin domain structure and function.

Place, publisher, year, edition, pages
National Academy of Sciences , 2019. Vol. 116, no (15), p. 7278-7287
Keywords [en]
O-glycosylation, mucin, protease, glycoproteomics, Siglec
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:umu:diva-157682DOI: 10.1073/pnas.1813020116PubMedID: 30910957Scopus ID: 2-s2.0-85064119997OAI: oai:DiVA.org:umu-157682DiVA, id: diva2:1300778
Available from: 2019-03-29 Created: 2019-03-29 Last updated: 2019-06-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Pett, ChristianWesterlind, Ulrika

Search in DiVA

By author/editor
Pett, ChristianWesterlind, Ulrika
By organisation
Department of Chemistry
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf