umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microscopy techniques for studying polymer-polymer blends
Umeå University, Faculty of Science and Technology, Department of Physics. (The Organic Photonics and Electronics group)
2019 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Semiconductors are used in many electronic applications, for example diodes, solar cells and transistors. Typically, semiconductors are inorganic materials, such as silicon and gallium arsenide, but lately more research and development has been devoted to organic semiconductors, for example semiconducting polymers. One of the reasons is that polymers can be customized, to a greater extent than inorganic semiconductors, to create a material with desired properties. Often, two polymers are blended to obtain the desired function, but two polymers do not usually result in an even blend. Instead they tend to separate from each other to varying degrees. The morphology of the blend affects the material properties, for example how efficiently it can convert electricity to light.

In this project, thin films consisting of polymer blends were examined using microscopy techniques for the purpose of increasing our understanding of the morphology of such blends. One goal was to investigate whether a technique called correlative light and electron microscopy can be useful for examining the morphology of these films. In correlative light and electron microscopy, a light microscope and an electron microscope are used in the same location in order to be able to correlate the information from the two microscopes. The second goal was to learn about the morphology of the thin films using various microscopy techniques.

The polymers used were Super Yellow and poly(ethylene oxide) with large molecular weight. Super Yellow is a semiconducting and light-emitting polymer while poly(ethylene oxide) is an isolating and non-emitting polymer that can crystallize. In the blend films, large, seemingly crystalline structures appeared. The structures could be up to 1 mm in the lateral direction, while the films were only approximately 170 nm thick. These structures could grow after the films had dried and their shapes were similar to those of poly(ethylene oxide) crystals. Consequently, there is reason to believe that it is the poly(ethylene oxide) that makes up the seemingly crystalline structures, but the structures also emitted more light than the rest of the film, and Raman spectroscopy showed that there was Super Yellow in the same location as the crystals.

Among the microscopy techniques used, phase contrast microscopy was particularly interesting. This method visualizes differences in optical path length and was useful for studying polymer blends when the polymers have different indices of refraction. Correlating light and electron microscopy showed that there was a pronounced topographical difference between the seemingly crystalline regions and the rest of the thin film. Light microscopy has a limited resolution due to diffraction, but as long as the resolution of the light microscope is sufficient for seeing phase separation, correlative light and electron microscopy turned out to be a good method for studying the morphology of thin films of polymer blends.

Abstract [sv]

Halvledare är viktiga för många elektroniska ändamål eftersom de kan användas till exempelvis dioder, solceller och transistorer. Traditionellt används inorganiska halvledande material som kisel eller galliumarsenid, men på senare tid har allt mer forskning och utveckling inriktat sig mot organiska (kolbaserade) halvledare, såsom halvledande polymerer, bland annat eftersom det i högre utsträckning går att skräddarsy de organiska materialen så att de får önskvärda egenskaper. Ofta blandas två polymerer med varandra för att skapa ett material med nya egenskaper som är önskvärda, men två polymerer brukar inte blandas jämnt utan tenderar att separera från varandra i olika utsträckning. Hur blandningen ser ut (morfologin) påverkar materialets egenskaper, till exempel hur effektivt det omvandlar ström till ljus.

Med syfte att öka förståelsen för hur morfologin ser ut hos en blandning av två polymerer, har detta projekt gått ut på att undersöka tunna filmer av polymer-blandningar med hjälp av mikroskopiska tekniker. Ett delmål var att ta reda på om en teknik som heter korrelativ ljus- och elektronmikroskopi är en bra metod för att undersöka morfologin hos dessa filmer. Vid korrelativ ljus- och elektronmikroskopi används både ett ljusmikroskop och ett elektronmikroskop på samma plats för att kunna korrelera informationen som de båda mikroskopen ger. Det andra delmålet var att undersöka vad de olika mikroskopi-teknikerna kan säga om morfologin hos de tunna filmerna.

De polymerer som använts är Super Yellow och poly(etylenoxid) med hög molekylmassa. Super Yellow är en oordnad halvledande och ljusemitterande polymer medan poly(etylenoxid) är en isolerande och icke-emitterande polymer som kan kristallisera. I de blandade filmerna uppstod stora kristall-liknande strukturer som kunde vara upp emot 1 mm breda trots att filmerna bara var ungefär 170 nm tunna. Dessa strukturer kunde växa fram efter det att filmerna redan hade torkat och påminde i form om kristaller som kan bildas av poly(etylenoxid). Det finns alltså skäl att tro att det är poly(etylenoxid) som kristalliserats, men de kristall-liknande strukturerna visade sig emittera mer ljus än vad resten av filmen gjorde, och Raman-spektroskopi visade att det även fanns Super Yellow på samma plats som kristallerna.

Bland de mikroskopitekniker som testades utmärker sig faskontrastmikroskopi, som visar skillnader i den optiska vägskillnaden (det vill säga faktisk vägskillnad multiplicerat med brytningsindex). Det visade sig vara en intressant teknik för att studera polymerblandningar när de båda polymererna har olika brytningsindex. Genom att korrelera ljus- och elektronmikroskopi visade det sig att det fanns en tydlig skillnad i struktur mellan de kristall-liknande områdena och resten av den tunna filmen. Ljusmikroskopi har begränsad upplösning på grund av ett fenomen som heter diffraktion, men så länge som ljusmikroskopets upplösning är tillräcklig för att se fasseparation visade det sig att korrelativ ljus- och elektronmikroskopi är en bra metod för att studera morfologin hos tunna filmer av polymerblandningar.

Place, publisher, year, edition, pages
2019. , p. 26
Keywords [en]
CLEM, correlative light and electron microscopy, correlative microscopy, fluorescence microscopy, scanning electron microscopy, phase contrast microscopy, polymer blend, morphology, super yellow, PEO, poly(ethylene oxide)
Keywords [sv]
CLEM, korrelativ ljus- och elektronmikroskopi, korrelativ mikroskopi, fluorescensmikroskopi, svepelektronmikroskopi, faskontrastsmikroskopi, polymerblandning, morfologi, super yellow, PEO, poly(etylenoxid)
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:umu:diva-157990OAI: oai:DiVA.org:umu-157990DiVA, id: diva2:1303215
Subject / course
Examensarbete i teknisk fysik
Educational program
Master of Science Programme in Engineering Physics
Presentation
2019-03-22, Universitetsklubben, Umeå, 13:00 (English)
Supervisors
Examiners
Available from: 2019-04-09 Created: 2019-04-09 Last updated: 2019-04-09Bibliographically approved

Open Access in DiVA

Microscopy techniques for studying polymer-polymer blends(3546 kB)130 downloads
File information
File name FULLTEXT01.pdfFile size 3546 kBChecksum SHA-512
f53eedc4c13a2232437d2c88ae94d90697d8b0da8dd039e3e12163f38df0f32f43f39e32dadde9f9da049cc793e7e19ad140e1d4647a6ba270e33b523fbfbcfe
Type fulltextMimetype application/pdf

By organisation
Department of Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 130 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 171 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf