umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Oxidatively Induced Exposure of Active Surface Area during Microwave Assisted Formation of Pt3Co Nanoparticles for Oxygen Reduction Reaction
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0002-6830-2174
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0001-9239-0541
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0002-5080-8273
2019 (Engelska)Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, nr 31, s. 17979-17987Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The oxygen reduction reaction (ORR), the rate-limiting reaction in proton exchange membrane fuel cells, can efficiently be facilitated by properly manufactured platinum catalysts alloyed with late 3d transition metals. Herein we synthesize a platinum:cobalt nanoparticulate catalyst with a 3:1 atomic ratio by reduction of a dry organometallic precursor blend within a commercial household microwave oven. The formed nanoparticles are simultaneously anchored to a carbon black support that enables large Pt surface area. Two separate microwave treatment steps were employed, where step one constitutes a fast oxidative treatment for revealing active surface area while a reductive secondary annealing treatment promotes a Pt rich surface. The resulting Pt3Co/C catalyst (~3.4 nm) demonstrate an enhanced ORR activity directly attributed to incorporated Co with a specific and mass activity of 704 μA cm-2Pt and 352 A g-1Pt corresponding to an increase by 279 % and 66 % respectively compared to a commercial Pt/C (~1.8 nm) catalyst measured under identical conditions. The method´s simplicity, scalability and novelty is expected to further assist in Pt-Co development and bring the catalyst one step closer toward commercialization and utility in fuel cells.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2019. Vol. 9, nr 31, s. 17979-17987
Nyckelord [en]
Proton exchange membrane fuel cell, platinum cobalt, Oxygen reduction reaction, Microwave synthesis
Nationell ämneskategori
Nanoteknik Annan materialteknik
Forskningsämne
nanomaterial; nanopartiklar; materialvetenskap
Identifikatorer
URN: urn:nbn:se:umu:diva-158492DOI: 10.1039/c9ra02095kISI: 000471914300054OAI: oai:DiVA.org:umu-158492DiVA, id: diva2:1307767
Forskningsfinansiär
Vetenskapsrådet, 2017-04862ÅForsk (Ångpanneföreningens Forskningsstiftelse), 15-483Energimyndigheten, 45419-1Vetenskapsrådet, 2018-03937Stiftelsen Olle Engkvist Byggmästare, 186-0637
Anmärkning

Originally included in thesis in manuscript form 

Tillgänglig från: 2019-04-29 Skapad: 2019-04-29 Senast uppdaterad: 2019-07-11Bibliografiskt granskad
Ingår i avhandling
1. Innovations in nanomaterials for proton exchange membrane fuel cells
Öppna denna publikation i ny flik eller fönster >>Innovations in nanomaterials for proton exchange membrane fuel cells
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Utveckling av nanomaterial för polymerelektrolytbränsleceller
Abstract [en]

Hydrogen technologies are rapidly receiving increased attention as it offers a renewable energy alternative to the current petroleum-based fuel infrastructure, considering that continued large-scale use of such fossil fuels will lead to disastrous impacts on our environment. The proton exchange membrane fuel cell should play a significant role in a hydrogen economy since it enables convenient and direct conversion of hydrogen into electricity, thus allowing the use of hydrogen in applications particularly suited for the transportation industry. To fully realize this, multiple engineering challenges as well as development of advanced nanomaterials must however be addressed.

In this thesis, we present discoveries of new innovative nanomaterials for proton exchange membrane fuel cells by targeting the entire membrane electrode assembly. Conceptually, we first propose new fabrication techniques of gas diffusion electrodes based on helical carbon nanofibers, where an enhanced three-phase boundary was noted in particular for hierarchical structures. The cathode catalyst, responsible for facilitating the sluggish oxygen reduction reaction, was further improved by the synthesis of platinum-based nanoparticles with an incorporated secondary metal (iron, yttrium and cobalt). Here, both solvothermal and high-temperature microwave syntheses were employed. Catalytic activities were improved compared to pure platinum and could be attributed to favorably shifted oxygen adsorption energies as a result of successful incorporation of the non-precious metal. As best exemplified by platinum-iron nanoparticles, the oxygen reduction reaction was highly sensitive to both metal composition and the type of crystal structure. Finally, a proton exchange membrane based on fluorine and sulfonic acid functionalized graphene oxide was prepared and tested in hydrogen fuel cell conditions, showing improvements such as lowered hydrogen permeation and better structural stability. Consequently, we have demonstrated that there is room for improvement of multiple components, suggesting that more powerful fuel cells can likely be anticipated in the future.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2019. s. 88
Nyckelord
Fuel Cells, Membrane Electrode Assembly, Oxygen Reduction Reaction, Platinum alloy catalyst, Nanoparticles, Gas Diffusion Electrode, Proton Exchange Membrane
Nationell ämneskategori
Energisystem Nanoteknik Annan materialteknik Annan kemiteknik Den kondenserade materiens fysik
Forskningsämne
materialvetenskap; fasta tillståndets fysik
Identifikatorer
urn:nbn:se:umu:diva-158501 (URN)978-91-7855-044-9 (ISBN)
Disputation
2019-05-28, N460, Naturvetarhuset, Umeå, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-05-07 Skapad: 2019-04-29 Senast uppdaterad: 2019-05-06Bibliografiskt granskad

Open Access i DiVA

fulltext(3220 kB)93 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3220 kBChecksumma SHA-512
a4565c9adc498a5f479f4c36a75d4ce80ec3276652149bbccbb7bc132a88831e5f745daaa69ce6c40e784e259efcb2667634623a3a756a95104ba06f2d428f96
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Sandström, RobinEkspong, JoakimGracia-Espino, EduardoWågberg, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Sandström, RobinEkspong, JoakimGracia-Espino, EduardoWågberg, Thomas
Av organisationen
Institutionen för fysik
I samma tidskrift
RSC Advances
NanoteknikAnnan materialteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 93 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 212 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf