umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of Fluorine and Sulfonic Acid Co-functionalized Graphene Oxide Membranes in Hydrogen Proton Exchange Membrane Fuel Cell Conditions
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0002-6830-2174
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0002-5210-2645
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Sustainable Energy & Fuels, ISSN 2398-4902, Vol. 3, nr 7, s. 1790-1798Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The use of graphene oxide (GO) based membranes consisting of self-assembled flakes with a lamellar structure represents an intriguing strategy to spatially separate reactants while facilitating proton transport in proton exchange membranes (PEM). Here we chemically modify GO to evaluate the role of fluorine and sulfonic acid groups on the performance of H2/O2 based PEM fuel cells. Mild fluorination is achieved by the presence of hydrogen fluoride during oxidation and subsequent sulfonation resulted in fluorine and SO3- co-functionalized GO. Membrane electrode assembly performance in low temperature and moderate humidity conditions suggested that both functional groups contribute to reduced H2 crossover compared to appropriate reference membranes. Moreover, fluorine groups promoted an enhanced hydrolytic stability while contributing to prevent structural degradation after constant potential experiments whereas sulfonic acid demonstrated a stabilizing effect by preserving proton conductivity.

Ort, förlag, år, upplaga, sidor
Royal Society of Medicine Press, 2019. Vol. 3, nr 7, s. 1790-1798
Nyckelord [en]
Proton exchange membrane, Fuel Cell, Graphene oxide, Hydrogen, Fluorine, Sulfonic acid
Nationell ämneskategori
Nanoteknik Annan kemiteknik Annan materialteknik Energisystem
Forskningsämne
nanomaterial
Identifikatorer
URN: urn:nbn:se:umu:diva-158496DOI: 10.1039/C9SE00126CISI: 000472980200014OAI: oai:DiVA.org:umu-158496DiVA, id: diva2:1307784
Forskningsfinansiär
Vetenskapsrådet, 2017-04862Energimyndigheten, 45419-1ÅForsk (Ångpanneföreningens Forskningsstiftelse), 15-483Interreg Nord
Anmärkning

Originally included in thesis in manuscript form

Tillgänglig från: 2019-04-29 Skapad: 2019-04-29 Senast uppdaterad: 2020-01-24Bibliografiskt granskad
Ingår i avhandling
1. Innovations in nanomaterials for proton exchange membrane fuel cells
Öppna denna publikation i ny flik eller fönster >>Innovations in nanomaterials for proton exchange membrane fuel cells
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Utveckling av nanomaterial för polymerelektrolytbränsleceller
Abstract [en]

Hydrogen technologies are rapidly receiving increased attention as it offers a renewable energy alternative to the current petroleum-based fuel infrastructure, considering that continued large-scale use of such fossil fuels will lead to disastrous impacts on our environment. The proton exchange membrane fuel cell should play a significant role in a hydrogen economy since it enables convenient and direct conversion of hydrogen into electricity, thus allowing the use of hydrogen in applications particularly suited for the transportation industry. To fully realize this, multiple engineering challenges as well as development of advanced nanomaterials must however be addressed.

In this thesis, we present discoveries of new innovative nanomaterials for proton exchange membrane fuel cells by targeting the entire membrane electrode assembly. Conceptually, we first propose new fabrication techniques of gas diffusion electrodes based on helical carbon nanofibers, where an enhanced three-phase boundary was noted in particular for hierarchical structures. The cathode catalyst, responsible for facilitating the sluggish oxygen reduction reaction, was further improved by the synthesis of platinum-based nanoparticles with an incorporated secondary metal (iron, yttrium and cobalt). Here, both solvothermal and high-temperature microwave syntheses were employed. Catalytic activities were improved compared to pure platinum and could be attributed to favorably shifted oxygen adsorption energies as a result of successful incorporation of the non-precious metal. As best exemplified by platinum-iron nanoparticles, the oxygen reduction reaction was highly sensitive to both metal composition and the type of crystal structure. Finally, a proton exchange membrane based on fluorine and sulfonic acid functionalized graphene oxide was prepared and tested in hydrogen fuel cell conditions, showing improvements such as lowered hydrogen permeation and better structural stability. Consequently, we have demonstrated that there is room for improvement of multiple components, suggesting that more powerful fuel cells can likely be anticipated in the future.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2019. s. 88
Nyckelord
Fuel Cells, Membrane Electrode Assembly, Oxygen Reduction Reaction, Platinum alloy catalyst, Nanoparticles, Gas Diffusion Electrode, Proton Exchange Membrane
Nationell ämneskategori
Energisystem Nanoteknik Annan materialteknik Annan kemiteknik Den kondenserade materiens fysik
Forskningsämne
materialvetenskap; fasta tillståndets fysik
Identifikatorer
urn:nbn:se:umu:diva-158501 (URN)978-91-7855-044-9 (ISBN)
Disputation
2019-05-28, N460, Naturvetarhuset, Umeå, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-05-07 Skapad: 2019-04-29 Senast uppdaterad: 2019-05-06Bibliografiskt granskad

Open Access i DiVA

fulltext(2788 kB)76 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2788 kBChecksumma SHA-512
8800b5ff9df348139c3799dc61fd0ea0c6b44d4928f6d3800b67e9ecaf5458cec4be51b1fc9c472d30cfe448199d8f2c6f730d5b90299b8260cb0340e88c0089
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Sandström, RobinAnnamalai, AlagappanBoulanger, NicolasEkspong, JoakimTalyzin, Aleksandr V.Wågberg, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Sandström, RobinAnnamalai, AlagappanBoulanger, NicolasEkspong, JoakimTalyzin, Aleksandr V.Wågberg, Thomas
Av organisationen
Institutionen för fysik
NanoteknikAnnan kemiteknikAnnan materialteknikEnergisystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 76 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 371 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf