umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A combination of incidence data and mobility proxies from social media predicts the intra-urban spread of dengue in Yogyakarta, Indonesia
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för hållbar hälsa. Center for Environmental Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för hållbar hälsa.ORCID-id: 0000-0003-4030-0449
2019 (Engelska)Ingår i: PLoS Neglected Tropical Diseases, ISSN 1935-2727, E-ISSN 1935-2735, Vol. 13, nr 4, artikel-id e0007298Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Only a few studies have investigated the potential of using geotagged social media data for predicting the patterns of spatio-temporal spread of vector-borne diseases. We herein demonstrated the role of human mobility in the intra-urban spread of dengue by weighting local incidence data with geo-tagged Twitter data as a proxy for human mobility across 45 neighborhoods in Yogyakarta city, Indonesia. To estimate the dengue virus importation pressure in each study neighborhood monthly, we developed an algorithm to estimate a dynamic mobility-weighted incidence index (MI), which quantifies the level of exposure to virus importation in any given neighborhood. Using a Bayesian spatio-temporal regression model, we estimated the coefficients and predictiveness of the MI index for lags up to 6 months. Specifically, we used a Poisson regression model with an unstructured spatial covariance matrix. We compared the predictability of the MI index to that of the dengue incidence rate over the preceding months in the same neighborhood (autocorrelation) and that of the mobility information alone. We based our estimates on a volume of 1·302·405 geotagged tweets (from 118·114 unique users) and monthly dengue incidence data for the 45 study neighborhoods in Yogyakarta city over the period from August 2016 to June 2018. The MI index, as a standalone variable, had the highest explanatory power for predicting dengue transmission risk in the study neighborhoods, with the greatest predictive ability at a 3-months lead time. The MI index was a better predictor of the dengue risk in a neighborhood than the recent transmission patterns in the same neighborhood, or just the mobility patterns between neighborhoods. Our results suggest that human mobility is an important driver of the spread of dengue within cities when combined with information on local circulation of the dengue virus. The geotagged Twitter data can provide important information on human mobility patterns to improve our understanding of the direction and the risk of spread of diseases, such as dengue. The proposed MI index together with traditional data sources can provide useful information for the development of more accurate and efficient early warning and response systems.

Ort, förlag, år, upplaga, sidor
2019. Vol. 13, nr 4, artikel-id e0007298
Nationell ämneskategori
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi
Identifikatorer
URN: urn:nbn:se:umu:diva-158806DOI: 10.1371/journal.pntd.0007298ISI: 000466742100035PubMedID: 30986218OAI: oai:DiVA.org:umu-158806DiVA, id: diva2:1314565
Tillgänglig från: 2019-05-09 Skapad: 2019-05-09 Senast uppdaterad: 2019-06-13Bibliografiskt granskad

Open Access i DiVA

fulltext(1141 kB)38 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1141 kBChecksumma SHA-512
0f96737daabf220b0c349b36c8b3d2baa4dfba332e6d8546c301187735ebdd8b7423680248d3423c5014601ec633c336637795a85e210732cc88cfde0b1a6934
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Ramadona, Aditya LiaRocklöv, Joacim

Sök vidare i DiVA

Av författaren/redaktören
Ramadona, Aditya LiaRocklöv, Joacim
Av organisationen
Avdelningen för hållbar hälsa
I samma tidskrift
PLoS Neglected Tropical Diseases
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 38 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 298 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf