umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Preparation and properties of modified graphene oxide incorporated waterborne polyurethane acrylate
Show others and affiliations
2019 (English)In: Polymer international, ISSN 0959-8103, E-ISSN 1097-0126, Vol. 68, no 6, p. 1091-1101Article in journal (Refereed) Published
Abstract [en]

In this study, a new modifier (KPG) was prepared by modifying graphene oxide with gamma-glycidoxypropyl trimethoxysilane (KH560) and polydimethylsiloxane (PDMS). KPG was in turn added to aqueous urethane acrylate for the fabrication of waterborne polyurethane polyacrylate emulsion modified with KH560-PDMS composite (KPG/WPUA). Textural characterizations of the KPG/WPUA coating were achieved via Fourier transform infrared, SEM, TGA and AFM techniques, which revealed that the KPG/WPUA film possessed a smooth surface. The synthesized KPG/WPUA films were tested for mechanical properties, hydrophobicity and acid/water corrosion performance which suggested their highly hydrophobic surface. KPG/WPUA with 0.1% KPG showed a contact angle of 118.35 degrees, 30.35 degrees higher than that of pristine WPUA. The KPG/WPUA film exhibited higher thermal stability, i.e. a 5% weight loss temperature of 305 degrees C, which was 30 degrees C higher than that of pristine WPUA film. The Young's modulus and elongation at break of the KPG/WPUA film were 34.1 MPa and 74.88% respectively, which were higher than that of WPUA film. Furthermore, KPG/WPUA films exhibited greater resistance (without obvious blistering and the white spotting phenomenon) to H2O2, HCl and water corrosion than pristine WPUA. The superior performance of KPG/WPUA films was attributed to the network chain structure formed upon the introduction of KPG into WPUA. The outstanding performance of KPG/WPUA films in terms of mechanical properties, thermal stability and high resistance to acidic and water corrosion makes them interesting alternative contenders for target applications. (c) 2019 Society of Chemical Industry

Place, publisher, year, edition, pages
Society of Chemical Industry , 2019. Vol. 68, no 6, p. 1091-1101
Keywords [en]
KPG composite modified WPUA film, high hydrophobicity, thermal stability, AFM and SEM, mechanical properties
National Category
Materials Chemistry Chemical Engineering
Identifiers
URN: urn:nbn:se:umu:diva-159842DOI: 10.1002/pi.5799ISI: 000467962300009OAI: oai:DiVA.org:umu-159842DiVA, id: diva2:1323122
Available from: 2019-06-11 Created: 2019-06-11 Last updated: 2019-06-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
By organisation
Department of Chemistry
In the same journal
Polymer international
Materials ChemistryChemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf