umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Revenue Generation in Data-driven Healthcare: An exploratory study of how big data solutions can be integrated into the Swedish healthcare system
Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Business Administration.
Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Business Administration.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Abstract

The purpose of this study is to investigate how big data solutions in the Swedish healthcare system can generate a revenue. As technology continues to evolve, the use of big data is beginning to transform processes in many different industries, making them more efficient and effective. The opportunities presented by big data have been researched to a large extent in commercial fields, however, research in the use of big data in healthcare is scarce and this is particularly true in the case of Sweden. Furthermore, there is a lack in research that explores the interface between big data, healthcare and revenue models. The interface between these three fields of research is important as innovation and the integration of big data in healthcare could be affected by the ability of companies to generate a revenue from developing such innovations or solutions. Thus, this thesis aims to fill this gap in research and contribute to the limited body of knowledge that exists on this topic.

The study conducted in this thesis was done via qualitative methods, in which a literature search was done and interviews were conducted with individuals who hold managerial positions at Region Västerbotten. The purpose of conducting these interviews was to establish a better understanding of the Swedish healthcare system and how its structure has influenced the use, or lack thereof, of big data in the healthcare delivery process, as well as, how this structure enables the generation of revenue through big data solutions. The data collected was analysed using the grounded theory approach which includes the coding and thematising of the empirical data in order to identify the key areas of discussion.

The findings revealed that the current state of the Swedish healthcare system does not present an environment in which big data solutions that have been developed for the system can thrive and generate a revenue. However, if action is taken to make some changes to the current state of the system, then revenue generation may be possible in the future. The findings from the data also identified key barriers that need to be overcome in order to increase the integration of big data into the healthcare system. These barriers included the (i) lack of big data knowledge and expertise, (ii) data protection regulations, (iii) national budget allocation and the (iv) lack of structured data. Through collaborative work between actors in both the public and private sectors, these barriers can be overcome and Sweden could be on its way to transforming its healthcare system with the use of big data solutions, thus, improving the quality of care provided to its citizens.

Key words: big data, healthcare, Swedish healthcare system, AI, revenue models, data-driven revenue models

Place, publisher, year, edition, pages
2019. , p. 86
Keywords [en]
big data, healthcare, revenue models, Swedish healthcare system, AI, data-driven revenue models
National Category
Business Administration
Identifiers
URN: urn:nbn:se:umu:diva-161384OAI: oai:DiVA.org:umu-161384DiVA, id: diva2:1334866
External cooperation
Anonymous
Supervisors
Examiners
Available from: 2019-07-03 Created: 2019-07-03 Last updated: 2019-07-03Bibliographically approved

Open Access in DiVA

fulltext(4676 kB)151 downloads
File information
File name FULLTEXT01.pdfFile size 4676 kBChecksum SHA-512
fe06bbc90bffbd2b62622e8e9635acac408d81177e3b8a8410f4d2f175208ae6dcd9b5a5f1d1649e274387271b6d2eb3076c6d4312c6e8f048c566376a0a25cc
Type fulltextMimetype application/pdf

By organisation
Business Administration
Business Administration

Search outside of DiVA

GoogleGoogle Scholar
Total: 151 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 58 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf