umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Measurement of Yersinia translocon pore formation in erythrocytes
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK.
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Region Västerbotten. (Francis)
Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). (Francis)
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden.
Show others and affiliations
2019 (English)In: Pathogenic Yersinia: methods and protocols / [ed] Viveka Vadyvaloo and Matthew B. Lawrenz, New York, NY, U.S.A.: Humana Press, 2019, p. 211-229Chapter in book (Refereed)
Abstract [en]

Many Gram-negative pathogens produce a type III secretion system capable of intoxicating eukaryotic cells with immune-modulating effector proteins. Fundamental to this injection process is the prior secretion of two translocator proteins destined for injectisome translocon pore assembly within the host cell plasma membrane. It is through this pore that effectors are believed to travel to gain access to the host cell interior. Yersinia species especially pathogenic to humans and animals assemble this translocon pore utilizing two hydrophobic translocator proteins-YopB and YopD. Although a full molecular understanding of the biogenesis, function and regulation of this translocon pore and subsequent effector delivery into host cells remains elusive, some of what we know about these processes can be attributed to studies of bacterial infections of erythrocytes. Herein we describe the methodology of erythrocyte infections by Yersinia, and how analysis of the resultant contact-dependent hemolysis can serve as a relative measurement of YopB- and YopD-dependent translocon pore formation.

Place, publisher, year, edition, pages
New York, NY, U.S.A.: Humana Press, 2019. p. 211-229
Series
Methods in Molecular Biology, ISSN 1064-3745, E-ISSN 1940-6029 ; 2010
Keywords [en]
Biogenesis, Contact-dependent hemolysis, Effector recognition and intracellular delivery, Function and regulation, Host immune response, Membrane integration, Type III translocon pore complex
National Category
Microbiology in the medical area Microbiology Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Research subject
Microbiology; Molecular Biology; Infectious Diseases
Identifiers
URN: urn:nbn:se:umu:diva-161385DOI: 10.1007/978-1-4939-9541-7_15PubMedID: 31177441ISBN: 978-1-4939-9540-0 (print)OAI: oai:DiVA.org:umu-161385DiVA, id: diva2:1335002
Funder
Swedish Research Council, 2014-2105Swedish Research Council, 2009-5628Available from: 2019-07-03 Created: 2019-07-03 Last updated: 2019-07-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Costa, TiagoFrancis, Monika K.Farag, SalahEdgren, TomasFrancis, Matthew S

Search in DiVA

By author/editor
Costa, TiagoFrancis, Monika K.Farag, SalahEdgren, TomasFrancis, Matthew S
By organisation
Department of Molecular Biology (Faculty of Science and Technology)Umeå Centre for Microbial Research (UCMR)
Microbiology in the medical areaMicrobiologyMedical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
isbn
urn-nbn

Altmetric score

doi
pubmed
isbn
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf