umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biotic and abiotic drivers of species loss rate in isolated lakes
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
2019 (English)In: Journal of Animal Ecology, ISSN 0021-8790, E-ISSN 1365-2656, Vol. 88, no 6, p. 881-891Article in journal (Refereed) Published
Abstract [en]

Today, anthropogenic impacts are causing a serious crisis for global biodiversity, with rates of extinction increasing at an unprecedented rate. Extinctions typically occur after a certain delay, and understanding the mechanisms causing delays is a key challenge for both fundamental and applied perspectives. Here, we make use of natural experiments, the isolation of lakes by land uplift in Northern Scandinavia, to examine how yearly extinction rates are affected by time since isolation and a range of abiotic and biotic factors. In this aim, we adapted a model of delayed species loss within isolated communities to test the effects of time since isolation, area, pH, depth and the presence/absence of piscivores on extinction rates. As expected, we found that small and/or young lakes experience a higher annual rate of extinctions per species than larger and/or older ones. Compared to previous studies that were conducted for either young (few thousand years ago) or very old (>10,000 years ago) isolates, we demonstrated over a large and continuous temporal scales (50-5,000 years), similar relationship between extinction rates and age. We also show that extinction rates are modified by local environmental factors such as a strong negative effect of increasing pH. Our results urge for the need to consider the time since critical environmental changes occurred when studying extinction rates. In a wider perspective, our study demonstrates the need to consider extinction debts when modelling future effects of climate change, land-use changes or biological invasions on biodiversity.

Place, publisher, year, edition, pages
WILEY , 2019. Vol. 88, no 6, p. 881-891
Keywords [en]
age, aquatic ecosystems, fragmentation, isolation, piscivores
National Category
Ecology
Identifiers
URN: urn:nbn:se:umu:diva-161598DOI: 10.1111/1365-2656.12980ISI: 000472660900007PubMedID: 30896043OAI: oai:DiVA.org:umu-161598DiVA, id: diva2:1338287
Funder
EU, Horizon 2020Available from: 2019-07-22 Created: 2019-07-22 Last updated: 2019-07-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Englund, Göran

Search in DiVA

By author/editor
Englund, Göran
By organisation
Department of Ecology and Environmental Sciences
In the same journal
Journal of Animal Ecology
Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf