umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microbial utilization of simple carbon substrates in boreal peat soils at low temperatures
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
Show others and affiliations
2019 (English)In: Soil Biology and Biochemistry, ISSN 0038-0717, E-ISSN 1879-3428, Vol. 135, p. 438-448Article in journal (Refereed) Published
Abstract [en]

Boreal peatlands are key high-latitude ecosystem types and act as a carbon (C) sink storing an estimated 25% of the world's soil C. These environments are currently seeing the most substantial changing climate, especially during the winter. CO2 emissions during the winter can correspond to 80% of the growing season's net CO2 assimilation. Yet, our conceptual understanding of the controls on microbial metabolic activity in peat soils at temperatures ≤0 °C is poor. We used stable isotope probing of peat samples and tracked the fate of 13C-glucose using 13C-NMR. We show that microorganisms in frozen boreal peat soils utilize monomeric C-substrates to sustain both catabolic and anabolic metabolism at temperatures down to −5 °C. The 13C-substrate was transformed into 13C–CO2, different metabolites, and incorporated into membrane phospholipid fatty acids. The 16S rRNA-based community analyses revealed the activity at −3 °C changes the composition of the bacterial community over relevant timescales. Below 0 °C, small temperature changes have strong effects on process rates and small differences in winter soil temperature may affect C dynamics of northern peatlands. Understanding biological processes at low and below zero temperatures are central for the overall functioning of these systems representing one of the world's major soil C pools.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 135, p. 438-448
Keywords [en]
Frozen peat soils, Microbial activity, Metabolism, C-13-NMR, DNA, Carbon cycling
National Category
Soil Science
Identifiers
URN: urn:nbn:se:umu:diva-162400DOI: 10.1016/j.soilbio.2019.06.006ISI: 000477689700051Scopus ID: 2-s2.0-85067368525OAI: oai:DiVA.org:umu-162400DiVA, id: diva2:1343932
Available from: 2019-08-19 Created: 2019-08-19 Last updated: 2019-08-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Schleucher, JürgenSparrman, Tobias

Search in DiVA

By author/editor
Schleucher, JürgenSparrman, Tobias
By organisation
Department of Medical Biochemistry and BiophysicsDepartment of Chemistry
In the same journal
Soil Biology and Biochemistry
Soil Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf