umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Oscillatory Flows in the Magnetotail Plasma Sheet: Cluster Observations of the Distribution Function
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0003-1167-8055
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-2043-4442
Umeå University, Faculty of Science and Technology, Department of Physics.
Show others and affiliations
2019 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 124, no 4, p. 2736-2754Article in journal (Refereed) Published
Abstract [en]

Plasma dynamics in Earth's magnetotail is often studied using moments of the distribution function, which results in losing information on the kinetic properties of the plasma. To better understand oscillatory flows observed in the midtail plasma sheet, we investigate two events, one in each hemisphere, in the transition region between the central plasma sheet and the lobes using the 2-D ion distribution function from the Cluster 4 spacecraft. In this case study, the oscillatory flows are a manifestation of repeated ion flux enhancements with pitch angle changing from 0 degrees to 180 degrees in the Northern Hemisphere and from 180 degrees to 0 degrees in the Southern Hemisphere. Similar pitch angle signatures are observed seven times in about 80 min for the Southern Hemisphere event and three times in about 80 min for the Northern Hemisphere event. The ion flux enhancements observed for both events are slightly shifted in time between different energy channels, indicating a possible time-of-flight effect from which we estimate that the source of particle is located similar to 5-25R(E) and similar to 40-107R(E) tailward of the spacecraft for the Southern and Northern Hemisphere event, respectively. Using a test particle simulation, we obtain similar to 21-46 R-E for the Southern Hemisphere event and tailward of X similar to - 65R(E) (outside the validity region of the model) for the Northern Hemisphere event. We discuss possible sources that could cause the enhancements of ion flux.

Place, publisher, year, edition, pages
AMER GEOPHYSICAL UNION , 2019. Vol. 124, no 4, p. 2736-2754
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:umu:diva-162349DOI: 10.1029/2018JA026116ISI: 000477707800027OAI: oai:DiVA.org:umu-162349DiVA, id: diva2:1346224
Available from: 2019-08-27 Created: 2019-08-27 Last updated: 2019-08-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

De Spiegeleer, AlexandreHamrin, MariaGunell, HerbertPitkänen, Timo

Search in DiVA

By author/editor
De Spiegeleer, AlexandreHamrin, MariaGunell, HerbertPitkänen, Timo
By organisation
Department of Physics
In the same journal
Journal of Geophysical Research - Space Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf