umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Raw meal and slag reactions during cement clinker formation
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (Thermochemical Energy Conversion Laboratory)
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
2019 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Natural limestones as raw material for OPC clinker manufacturing contribute to emissions of CO2gases during the production of clinker. In addition, the mining of limestone can regionally be controlledby restrictions due to environmental concerns. Slags from the steel industry can replace limestone tominimize the use of the mineral deposits. Both materials have similar chemistry and are compatible asraw materials.Utilizing slags raises questions about how slag particles will react with other raw meal components asthe temperature in the kiln increases during clinker formation. This study establishes the chemical andmineralogical aspects of replacing a portion of the limestone with slags. Of interest is how the materialsreact during the formation of the liquid phase and the formation of phases containing MgO.Three different slags were examined, a basic oxygen furnace slag BOF, a crystalline blast-furnace slagand a granulated blast-furnace slag. In the study, the microstructural causes of reactivity, as well asmineral formation in the transition zone between raw meal components, developing liquid phase andslag particles were studied. Heated raw meals were studied using HT-QXRD, QXRD, SEM andthermodynamic modeling to describe the reactions of particles at higher temperatures. The resultsshow that the formation of clinker minerals is strongly influenced by the type and amount of slag. Thus,a careful selection must be done of both composition and quantity of metallurgical slags for naturallimestone replacement in order to maintain clinker quality.

Place, publisher, year, edition, pages
2019.
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:umu:diva-162764OAI: oai:DiVA.org:umu-162764DiVA, id: diva2:1346484
Conference
15th International Congress on the Chemistry of Cement, Prague, Czech Republic, September 16–20, 2019
Available from: 2019-08-28 Created: 2019-08-28 Last updated: 2019-08-28

Open Access in DiVA

No full text in DiVA

Authority records BETA

Viggh, ErikBoström, DanWilhelmsson, Bodil

Search in DiVA

By author/editor
Viggh, ErikBoström, DanWilhelmsson, Bodil
By organisation
Department of Applied Physics and Electronics
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf