umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reducing the CO2 footprint of cement production byelectrification
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (Thermochemical Energy Conversion Laboratory (TEC-Lab))
2019 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Transformative actions in CO2 emitting industries are needed to reach the Paris climate agreement.The cement industry, which is responsible for 5-7% of the global CO2 emissions, has the possibility tomake a difference.Cement production is related to two sources of CO2; 1/3 from combustion of fuels and 2/3 fromcalcination of limestone in the cement raw meal. If all the fuels were to be substituted with non-fossilelectricity, the environmental gain would be significant. Cementa and Vattenfall are evaluatingpossibilities on how electricity can be used to substitute fuels in the cement production by 2030.By using electricity for heating, several positive effects are achieved in the production process. Thecleanness of the exhaust gas will be higher due to elimination of volatiles from fuels. The energyconsumption decreases due to lesser volume of gas to be heated. This is related to the exclusion ofnitrogen gas in the process.A feasibility study comprising literature survey and small scale tests have been performed. Electricalheating techniques showing potential are; microwave heating, plasma torches, flash calcination withelectrical heating, hydrogen combustion and a combination of the mentioned techniques.The most relevant finding is that the combustion related CO2 emissions will be eliminated; thecapturing step will be enhanced since the CO2 gas from calcination is clean and accordingly the needof storage or utilization of CO2 is decreased.

Place, publisher, year, edition, pages
2019.
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:umu:diva-162787OAI: oai:DiVA.org:umu-162787DiVA, id: diva2:1346488
Conference
15th International Congress on the Chemistry of Cement Prague, Czech Republic, September 16–20, 2019
Available from: 2019-08-28 Created: 2019-08-28 Last updated: 2019-08-28

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Wilhelmsson, BodilBackman, Rainer
By organisation
Department of Applied Physics and Electronics
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 11 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf