umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Insights into the origin of the high energy-conversion efficiency of F-1-ATPase
Umeå University, Faculty of Science and Technology, Department of Chemistry.
2019 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 116, no 32, p. 15924-15929Article in journal (Refereed) Published
Abstract [en]

Our understanding of the rotary-coupling mechanism of F-1-ATPase has been greatly enhanced in the last decade by advances in X-ray crystallography, single-molecular imaging, and theoretical models. Recently, Volkan-Kacso and Marcus [S. Volkan-Kacso, R. A. Marcus, Proc. Natl. Acad. Sci. U.S.A. 112, 14230 (2015)] presented an insightful thermodynamic model based on the Marcus reaction theory coupled with an elastic structural deformation term to explain the observed gamma-rotation angle dependence of the adenosine triphosphate (ATP)/ adenosine diphosphate (ADP) exchange rates of F-1-ATPase. Although the model is successful in correlating single-molecule data, it is not in agreement with the available theoretical results. We describe a revision of the model, which leads to consistency with the simulation results and other experimental data on the F-1-ATPase rotor compliance. Although the free energy liberated on ATP hydrolysis by F-1-ATPase is rapidly dissipated as heat and so cannot contribute directly to the rotation, we show how, nevertheless, F-1-ATPase functions near the maximum possible efficiency. This surprising result is a consequence of the differential binding of ATP and its hydrolysis products ADP and P-i along a well-defined pathway.

Place, publisher, year, edition, pages
NATL ACAD SCIENCES , 2019. Vol. 116, no 32, p. 15924-15929
Keywords [en]
F-1-ATPase, chemo-mechanical coupling, energy-conversion efficiency, free-energy profile
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-162303DOI: 10.1073/pnas.1906816116ISI: 000478971900032PubMedID: 31341091OAI: oai:DiVA.org:umu-162303DiVA, id: diva2:1349777
Available from: 2019-09-10 Created: 2019-09-10 Last updated: 2019-09-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Nam, Kwangho

Search in DiVA

By author/editor
Nam, Kwangho
By organisation
Department of Chemistry
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf