umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrochemical sensing of bacteria via secreted redox active compounds using conducting polymers
Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
2019 (English)In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 297, article id UNSP 126703Article in journal (Refereed) Published
Abstract [en]

Bacterial infections and antibiotic resistance represent major global threats to public health. Current diagnostics use culture based assays that are reliable but slow, hence appealing for new rapid methods. Here we describe redox sensing as a novel concept for rapid, label-free detection of bacteria. We utilize a two-electrode poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) based sensor for detection of bacterially secreted redox-active compounds. Using purified redox-active compounds, we show the ability of the sensor to detect and quantify compounds in micromolar concentrations within minutes. When applied for detection and quantification of Salmonella, we show that secreted, low molecular weight redox compounds cause reduction of the PEDOT:PSS electrode. A potential role of redox sensing in infection diagnostics was demonstrated as uropathogenic strains of E. coli., Staphylococcus, Enterococcus, Pseudomonas, Proteus, and Klebsiella spp., major causes of complicated urinary tract infections, were successfully detected in complex media or processed urine. Since numerous bacterial species are capable of extracellular electron transfer, redox sensing may find use as a generic method for bacterial detection with applications in research laboatories, the clinic and industry alike.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE SA , 2019. Vol. 297, article id UNSP 126703
Keywords [en]
Salmonella, Uropathogens, Redox, Sensor, Diagnostics, Organic bioelectronic
National Category
Analytical Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-162295DOI: 10.1016/j.snb.2019.126703ISI: 000478562700038OAI: oai:DiVA.org:umu-162295DiVA, id: diva2:1349778
Available from: 2019-09-10 Created: 2019-09-10 Last updated: 2019-09-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Rhen, Mikael

Search in DiVA

By author/editor
Rhen, Mikael
By organisation
Umeå Centre for Microbial Research (UCMR)Molecular Infection Medicine Sweden (MIMS)
In the same journal
Sensors and actuators. B, Chemical
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 127 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf