umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multiresolution clustering of dependent functional data with application to climate reconstruction
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik.ORCID-id: 0000-0001-7917-5687
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2019 (Engelska)Ingår i: Stat, E-ISSN 2049-1573, Vol. 8, nr 1, artikel-id e240Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We propose a new nonparametric clustering method for dependent functional data, the double clustering bagging Voronoi method. It consists of two levels of clustering. Given a spatial lattice of points, a function is observed at each grid point. In the first‐level clustering, features of the functional data are clustered. The second‐level clustering takes dependence into account, by grouping local representatives, built from the resulting first‐level clusters, using a bagging Voronoi strategy. Depending on the distance measure used, features of the functions may be included in the second‐step clustering, making the method flexible and general. Combined with the clustering method, a multiresolution approach is proposed that searches for stable clusters at different spatial scales, aiming to capture latent structures. This provides a powerful and computationally efficient tool to cluster dependent functional data at different spatial scales, here illustrated by a simulation study. The introduced methodology is applied to varved lake sediment data, aiming to reconstruct winter climate regimes in northern Sweden at different time resolutions over the past 6,000 years.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2019. Vol. 8, nr 1, artikel-id e240
Nyckelord [en]
bagging Voronoi strategy, climate reconstruction, clustering, dependency, functional data
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-164004DOI: 10.1002/sta4.240OAI: oai:DiVA.org:umu-164004DiVA, id: diva2:1360319
Forskningsfinansiär
Vetenskapsrådet, 340-2013-5203Vetenskapsrådet, 2016-02763Tillgänglig från: 2019-10-11 Skapad: 2019-10-11 Senast uppdaterad: 2019-10-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Abramowicz, KonradSchelin, LinaSjöstedt de Luna, SaraStrandberg, Johan

Sök vidare i DiVA

Av författaren/redaktören
Abramowicz, KonradSchelin, LinaSjöstedt de Luna, SaraStrandberg, Johan
Av organisationen
Institutionen för matematik och matematisk statistikStatistik
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 165 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf