umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Combined manganese oxides as oxygen carriers for biomass combustion – Ash interactions
Show others and affiliations
2019 (English)In: Chemical engineering research & design, ISSN 0263-8762, E-ISSN 1744-3563, Vol. 149, p. 104-120Article in journal (Refereed) Published
Abstract [en]

Carbon capture and storage (CCS) has been acknowledged as an important strategy for mitigation of climate change. Although highly applicable for fossil fuels, CCS with biomass could have the added advantage of resulting in negative emissions of carbon dioxide. One promising carbon capture technology is chemical-looping combustion (CLC). In CLC the reactors are filled with metal oxide bed material called oxygen carriers. Before CLC can be implemented for biomass combustion at a large scale, biomass ash components interaction with oxygen carriers needs to be further understood.

Four combined manganese oxides Mn3O4-SiO2, Mn3O4-SiO2-TiO2, Mn3O4-Fe2O3 and Mn3O4-Fe2O3-Al2O3 were exposed to common biomass ash components K, Ca and P. The ash components can exist in many forms, but here the compounds CaCO3, K2CO3 and CaHPO4 were used. Exposures were performed at 900 °C for six hours in oxidising, reducing and inert conditions. Crystalline phases were analysed by XRD and morphology examined with SEM-EDX.

Results show that oxygen carrier particles containing silicon were more likely to form agglomerates, especially in combination with potassium, whereas the particles including iron were more stable. MnFeAl was the oxygen carrier that showed least agglomerating behaviour while simultaneously showing a propensity to absorb some ash components.

Some inconsistencies between thermodynamic predictions and experimental results is observed. This may be explained by lack of relevant data in the used databases, were only a few of the oxygen carrier-ash systems and subsystems have been optimised. Further optimisation related to manganese rich systems should be performed to obtain reliable results.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 149, p. 104-120
Keywords [en]
Chemical looping combustion (CLC), Combined manganese oxides, Oxygen carrier, Fluidised bed combustion, Ash interactions
National Category
Other Environmental Engineering
Identifiers
URN: urn:nbn:se:umu:diva-164635DOI: 10.1016/j.cherd.2019.07.004ISI: 000484646500009Scopus ID: 2-s2.0-85069864735OAI: oai:DiVA.org:umu-164635DiVA, id: diva2:1368886
Available from: 2019-11-08 Created: 2019-11-08 Last updated: 2019-11-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Backman, Rainer

Search in DiVA

By author/editor
Backman, Rainer
By organisation
Department of Applied Physics and Electronics
In the same journal
Chemical engineering research & design
Other Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf