umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
DM-MCDA: A web-based platform for data mining and multiple criteria decision analysis: A case study on road accident
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (DDM)
Cadi Ayyad university. (LISI)
2019 (Engelska)Ingår i: SoftwareX, E-ISSN 2352-7110, Vol. 10, artikel-id 100323Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Today’s ultra-connected world is generating a huge amount of data stored in databases and cloud environment especially in the era of transportation. These databases need to be processed and analyzed to extract useful information and present it as a valid element for transportation managers for further use, such as road safety, shipping delays, and shipping optimization. The potential of data mining algorithms is largely untapped, this paper shows large-scale techniques such as associations rule analysis, multiple criteria analysis, and time series to improve road safety by identifying hot-spots in advance and giving chance to drivers to avoid the dangers. Indeed, we proposed a framework DM-MCDA based on association rules mining as a preliminary task to extract relationships between variables related to a road accident, and then integrate multiple criteria analysis to help decision-makers to make their choice of the most relevant rules. The developed system is flexible and allows intuitive creation and execution of different algorithms for an extensive range of road traffic topics. DM-MCDA can be expanded with new topics on demand, rendering knowledge extraction more robust and provide meaningful information that could help in developing suitable policies for decision-makers.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019. Vol. 10, artikel-id 100323
Nyckelord [en]
data mining, association rules, Multiple criteria decision analysis
Nationell ämneskategori
Datorsystem
Forskningsämne
datalogi
Identifikatorer
URN: urn:nbn:se:umu:diva-165127DOI: 10.1016/j.softx.2019.100323ISI: 000504065000014Scopus ID: 2-s2.0-85071883425OAI: oai:DiVA.org:umu-165127DiVA, id: diva2:1369186
Tillgänglig från: 2019-11-11 Skapad: 2019-11-11 Senast uppdaterad: 2020-01-10Bibliografiskt granskad

Open Access i DiVA

fulltext(2360 kB)25 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2360 kBChecksumma SHA-512
906d7788361346f2a5965f47931a017f6a3e991675aac6a1ed4b575904522956718923fc823be9c3cf14279dc79e739e6adc50f4d4abfb9b1353b0348a505de4
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Addi, Ait-Mlouk

Sök vidare i DiVA

Av författaren/redaktören
Addi, Ait-Mlouk
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
SoftwareX
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 25 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 141 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf