umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling
Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden. (Teresa Frisan)ORCID iD: 0000-0002-1209-0942
Show others and affiliations
2010 (English)In: Journal of Cellular and Molecular Medicine (Print), ISSN 1582-1838, E-ISSN 1582-4934, Vol. 14, no 1-2, p. 357-367Article in journal (Refereed) Published
Abstract [en]

Cytolethal distending toxins (CDTs) are proteins produced and secreted by facultative pathogenic strains of Gram‐negative bacteria with potentially genotoxic effects. Mammalian cells exposed to CDTs undergo cell type‐dependent cell‐cycle arrest or apoptosis; however, the cell fate responses to such intoxication are mechanistically incompletely understood. Here we show that both normal and cancer cells (BJ, IMR‐90 and WI‐38 fibroblasts, HeLa and U2‐OS cell lines) that survive the acute phase of intoxication by Haemophilus ducreyi CDT possess the hallmarks of cellular senescence. This characteristic phenotype included persistently activated DNA damage signalling (detected as 53BP1/γH2AX+ foci), enhanced senescence‐associated β‐galactosidase activity, expansion of promyelocytic leukaemia nuclear compartments and induced expression of several cytokines (especially interleukins IL‐6, IL‐8 and IL‐24), overall features shared by cells undergoing replicative or premature cellular senescence. We conclude that analogous to oncogenic, oxidative and replicative stresses, bacterial intoxication represents another pathophysiological stimulus that induces premature senescence, an intrinsic cellular response that may mechanistically underlie the ‘distended’ morphology evoked by CDTs. Finally, the activation of the two anticancer barriers, apoptosis and cellular senescence, together with evidence of chromosomal aberrations (micronucleation) reported here, support the emerging genotoxic and potentially oncogenic effects of this group of bacterial toxins, and warrant further investigation of their role(s) in human disease.

Place, publisher, year, edition, pages
John Wiley & Sons, 2010. Vol. 14, no 1-2, p. 357-367
Keywords [en]
cellular senescence, DNA damage response, bacterial toxins, cytokines, genetic instability
National Category
Cell and Molecular Biology Cell Biology Immunology
Identifiers
URN: urn:nbn:se:umu:diva-165152DOI: 10.1111/j.1582-4934.2009.00862.xISI: 000275639700031PubMedID: 19650831OAI: oai:DiVA.org:umu-165152DiVA, id: diva2:1369418
Available from: 2019-11-12 Created: 2019-11-12 Last updated: 2019-11-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Frisan, Teresa

Search in DiVA

By author/editor
Frisan, Teresa
In the same journal
Journal of Cellular and Molecular Medicine (Print)
Cell and Molecular BiologyCell BiologyImmunology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf