umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Whole Cell Identification of Microorganisms in Their Natural Environment with Fluorescence in situ Hybridization (FISH)
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
2019 (English)In: Analytical geomicrobiology: a handbook of instrumental techniques / [ed] Janice P. L. Kenney, Harish Veeramani, Daniel S. Alessi, Cambridge: Cambridge University Press, 2019, p. 187-212Chapter in book (Refereed)
Abstract [en]

One of the main goals in biogeochemistry is to explore the global relationships between organisms and chemical elements in different ecosystems. A diversity of analytical techniques based on chemical-physical or molecular biological procedures are available to explore different organisms and their abiotic and biotic interactions in a variety of ecosystems. Even though many of these modern analytical techniques are irreplaceable in today´s research, most of them can only provide indirect results because they are built on a “black-box” approach, where the biological species in an ecosystem or a geological environment are disrupted for extraction of nucleic acids, proteins, etc. Essential biological information, such as the morphology of specific species, their location, distribution, association with other organisms in their natural environment, and individual activities and functions, is therefore lost. Fluorescence in situ hybridization (FISH) helps retrieve this information without either cultivation or extraction of cell components, and can therefore provide a quick and useful complement to different “black-box”-based approaches. FISH is based on fluorescently labeled gene probes with a unique nucleotide composition designed to match specific genes in different cellular species. Thus, different biological species can be identified simultaneously with different gene probes labeled with different fluorochromes in their natural environment. The technique has undergone extensive development with around 30 variations for different applications. FISH is evaluated either by microscopy (e.g., fluorescence microscopy, Raman micro spectroscopy, Nano-SIMS), or by nonmicroscope-based methods, such as flow cytometry, microarray technology, or molecular biological methods such as proteomics. This chapter will serve as a guide for sample preparation, selection of appropriate FISH protocols, evaluation and design of gene probes, and evaluation of FISH experiments.

Place, publisher, year, edition, pages
Cambridge: Cambridge University Press, 2019. p. 187-212
National Category
Other Biological Topics
Identifiers
URN: urn:nbn:se:umu:diva-166597DOI: 10.1017/9781107707399.008ISBN: 978-1-107-07033-2 (print)OAI: oai:DiVA.org:umu-166597DiVA, id: diva2:1380151
Available from: 2019-12-18 Created: 2019-12-18 Last updated: 2019-12-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Lee, Natuschka M.

Search in DiVA

By author/editor
Lee, Natuschka M.
By organisation
Department of Ecology and Environmental SciencesDepartment of Medical Biochemistry and Biophysics
Other Biological Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf