umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Functional maintenance in the multiple demand network characterizes superior fluid intelligence in aging
Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
Show others and affiliations
2020 (English)In: Neurobiology of Aging, ISSN 0197-4580, E-ISSN 1558-1497, Vol. 85, p. 145-153Article in journal (Refereed) Published
Abstract [en]

The multiple demand network (MDN) is conceptualized as the core processing system for multi-tasking. Increasing evidence also provides strong support for the involvement of the MDN in fluid intelligence (gF), that is, the ability to solve new problems. However, the underlying neural mechanisms of declining intelligence in old age are poorly explored, particularly whether maintenance of the functional architecture of the MDN can characterize superior intelligence in successful aging. Here, we used eigenvector centrality (EC) to explore the resting-state functional architecture of the MDN in terms of its communication across the entire brain. We found gF to be negatively associated with age and that the MDN EC competitively mediated age-related decline in gF over the aging lifespan, suggesting that excessive cross-talk from the MDN is deleterious for intelligence. Critically, older individuals with comparable MDN EC as younger individuals exhibited superior gF compared with their age-matched counterparts. Taken together, these data provide support for the maintenance of youth-like functional architecture of the MDN and its implication for superior intelligence in successful aging. 

Place, publisher, year, edition, pages
Elsevier, 2020. Vol. 85, p. 145-153
Keywords [en]
Functional MRI (fMRI), Functional centrality, Brain maintenance, Aging lifespan, Fluid intelligence
National Category
Geriatrics
Identifiers
URN: urn:nbn:se:umu:diva-166827DOI: 10.1016/j.neurobiolaging.2019.09.006ISI: 000501333500015PubMedID: 31718925OAI: oai:DiVA.org:umu-166827DiVA, id: diva2:1382467
Available from: 2020-01-03 Created: 2020-01-03 Last updated: 2020-01-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Salami, Alireza

Search in DiVA

By author/editor
Salami, Alireza
By organisation
Umeå Centre for Functional Brain Imaging (UFBI)Department of Integrative Medical Biology (IMB)Wallenberg Centre for Molecular Medicine at Umeå University (WCMM)
In the same journal
Neurobiology of Aging
Geriatrics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf