umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
In-field grape cluster size assessment for vine yield estimation using a mobile robot and a consumer level RGB-D camera
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-4600-8652
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: IEEE Robotics and Automation Letters, ISSN 2377-3766, E-ISSN 1949-3045, Vol. 5, nr 2, s. 2031-2038Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Current practice for vine yield estimation is based on RGB cameras and has limited performance. In this paper we present a method for outdoor vine yield estimation using a consumer grade RGB-D camera mounted on a mobile robotic platform. An algorithm for automatic grape cluster size estimation using depth information is evaluated both in controlled outdoor conditions and in commercial vineyard conditions. Ten video scans (3 camera viewpoints with 2 different backgrounds and 2 natural light conditions), acquired from a controlled outdoor experiment and a commercial vineyard setup, are used for analyses. The collected dataset (GRAPES3D) is released to the public. A total of 4542 regions of 49 grape clusters were manually labeled by a human annotator for comparison. Eight variations of the algorithm are assessed, both for manually labeled and auto-detected regions. The effect of viewpoint, presence of an artificial background, and the human annotator are analyzed using statistical tools. Results show 2.8-3.5 cm average error for all acquired data and reveal the potential of using lowcost commercial RGB-D cameras for improved robotic yield estimation.

Ort, förlag, år, upplaga, sidor
IEEE, 2020. Vol. 5, nr 2, s. 2031-2038
Nyckelord [en]
Field Robots, RGB-D Perception, Agricultural Automation, Robotics in Agriculture and Forestry
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Forskningsämne
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:umu:diva-167778DOI: 10.1109/LRA.2020.2970654OAI: oai:DiVA.org:umu-167778DiVA, id: diva2:1390934
Tillgänglig från: 2020-02-03 Skapad: 2020-02-03 Senast uppdaterad: 2020-02-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Ringdahl, Ola

Sök vidare i DiVA

Av författaren/redaktören
Kurtser, PolinaRingdahl, Ola
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
IEEE Robotics and Automation Letters
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 145 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf