umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pluripolar sets and subextension in Cegrell's classes
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2008 (English)In: Complex Variables and Elliptic Equations, ISSN 1747-6933, E-ISSN 1747-6941, Vol. 53, no 7, p. 675-684Article in journal (Refereed) Published
Abstract [en]

In this article, we prove that if E is a complete pluripolar set in Ω, then E = { = −∞} for some  (Ω). Moreover, we study the subextension in Cegrell's class p .

Place, publisher, year, edition, pages
Taylor & Francis, 2008. Vol. 53, no 7, p. 675-684
Keywords [en]
complex Monge-Ampére operator, plurisubharmonic function
National Category
Mathematics
Identifiers
URN: urn:nbn:se:umu:diva-2985DOI: 10.1080/17476930801966893OAI: oai:DiVA.org:umu-2985DiVA, id: diva2:141390
Available from: 2008-02-26 Created: 2008-02-26 Last updated: 2018-03-15Bibliographically approved
In thesis
1. Dirichlet's problem in Pluripotential Theory
Open this publication in new window or tab >>Dirichlet's problem in Pluripotential Theory
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis we focus on Dirichlet's problem for the complex Monge-Ampère equation. That is, for a given non-negative Radon measure µ we are interested in the conditions under which there exists a plurisubharmonic function u such that (ddcu)n=µ, where (ddc)n is the complex Monge-Ampère operator. If this function u exists, then can it be chosen with given boundary values? Is this solution uniquely determined within a given class of functions?

Place, publisher, year, edition, pages
Umeå: Matematik och matematisk statistik, 2008. p. 19
Series
Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 40
Keywords
Complex Monge-Ampère operator, currents, Dirichlet problem, pluripotential theory, plurisubharmonic function, subextension
National Category
Mathematics
Identifiers
urn:nbn:se:umu:diva-1562 (URN)978-91-7264-443-4 (ISBN)
Public defence
2008-03-19, MA121, MIT, 901 87, Umeå, 10:15 (English)
Opponent
Supervisors
Available from: 2008-02-26 Created: 2008-02-26 Last updated: 2009-06-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
By organisation
Department of Mathematics and Mathematical Statistics
In the same journal
Complex Variables and Elliptic Equations
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 107 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf