Change search
ReferencesLink to record
Permanent link

Direct link
Reintroduction of two deleted virulence loci restores full virulence of the live vaccine strain (LVS) of Francisella tularensis
Umeå University, Faculty of Science and Technology, Molecular Biology (Faculty of Science and Technology).
FOI, Umeå (Swedish Defence Research Agency).
FOI, Umeå (Swedish Defence Research Agency).
Umeå University, Faculty of Medicine, Clinical Microbiology. Umeå University, Faculty of Medicine, Clinical Microbiology, Clinical Bacteriology.
Show others and affiliations
(English)Manuscript (Other (popular science, discussion, etc.))
URN: urn:nbn:se:umu:diva-3220OAI: diva2:141726
Available from: 2008-05-15 Created: 2008-05-15 Last updated: 2010-01-14Bibliographically approved
In thesis
1. The role of the Type IV pili system in the virulence of Francisella tularensis
Open this publication in new window or tab >>The role of the Type IV pili system in the virulence of Francisella tularensis
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Francisella tularensis is a Gram-negative intracellular pathogen causing the zoonotic disease tularemia. F. tularensis can be found almost all over the world and has been recovered from several animal species, even though the natural reservoir of the bacterium and parts of its life cycle are still unknown. Humans usually get infected after handling infected animals or from bites of blood-feeding arthropod vectors. There are four subspecies of F. tularensis: the highly virulent tularensis (Type A) that causes a very aggressive form of the disease, with mortality as high as 60% if untreated, the moderately virulent holarctica (Type B) and mediasiatica, and the essentially avirulent subspecies F. novicida. So far, our knowledge of the molecular mechanisms that would explain these differences in virulence among the subspecies is poor. However, recent developments of genetic tools and access to genomic sequences have laid the ground for progress in this research field. Analysis of genome sequences have identified several regions that differ between F. tularensis subspecies. One of these regions, RD19, encodes proteins postulated to be involved in assembly of type IV pili (Tfp), organelles that have been implicated in processes like twitching motility, biofilm formation and cell-to-cell communication in pathogenic bacteria. While there have been reports of pili-like structures on the surface of F. tularensis, these have not been linked to the Tfp encoding gene clusters until now. Herein, I present evidence that the Francisella pilin, PilA, can complement pilin-like characteristics and promote assembly of fibers in a heterologous system in Neisseria gonorrhoeae. pilA was demonstrated to be required for full virulence of both type A and type B strains in mice when infected via peripheral routes. A second region, RD18, encoding a protein unique to F. tularensis and without any known function, was verified to be essential for virulence in a type A strain. Interestingly, the non-licensed live vaccine strain, LVS (Type B), lacks both RD18 and RD19 (pilA) due to deletion events mediated by flanking direct repeats. The loss of RD18 and RD19 is responsible for the attenuation of LVS, since re-introducing them in cis could restore the virulence to a level similar to a virulent type B strain. Significantly, these deletion events are irreversible, preventing LVS to revert to a more virulent form. Therefore, this important finding could facilitate the licensing of LVS as a vaccine against tularemia.

Place, publisher, year, edition, pages
Umeå: Molekylärbiologi (Teknisk-naturvetenskaplig fakultet), 2008. 73 p.
Francisella tularensis, tularemia, bacterial pathogenesis, Type IV pili, Type II secretion, Neisseria gonorrhoeae, PilA, RD18, RD19
National Category
Biochemistry and Molecular Biology
urn:nbn:se:umu:diva-1656 (URN)978-91-7264-553-0 (ISBN)
Public defence
2008-06-05, Major Groove, 6L NUS, Umeå Universitet 901 87, Umeå, 09:00
Available from: 2008-05-15 Created: 2008-05-15Bibliographically approved

Open Access in DiVA

No full text

By organisation
Molecular Biology (Faculty of Science and Technology)Clinical MicrobiologyClinical BacteriologyMolecular Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 34 hits
ReferencesLink to record
Permanent link

Direct link