Change search
ReferencesLink to record
Permanent link

Direct link
Automatic Segmentation of Fibroglandular Tissue
Umeå University, Faculty of Science and Technology, Department of Computing Science.
2007 (English)In: Image Analysis, ISSN 0302-9743, Vol. 4522, 679-688 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2007. Vol. 4522, 679-688 p.
URN: urn:nbn:se:umu:diva-3224OAI: diva2:141731
Available from: 2008-05-15 Created: 2008-05-15Bibliographically approved
In thesis
1. Towards Automatic Image Analysis for Computerised Mammography
Open this publication in new window or tab >>Towards Automatic Image Analysis for Computerised Mammography
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Mammographic screening is an effective way to detect breast cancer. Early detection of breast cancer depends to a high degree on the adequacy of the mammogram from which the diagnosis is made. Today, most of the analysis of the mammogram is performed by radiologists. Computer-aided diagnosis (CAD) systems have been proposed as an aid to increase the efficiency and effectiveness of the screening procedure by automatically indicating abnormalities in the mammograms. However, in order for a CAD system to be stable and efficient, the input images need to be adequate. Criteria for adequacy include: high resolution, low image noise and high image contrast. Additionally, the breast needs to be adequately positioned and compressed to properly visualise the entire breast and especially the glandular tissue.

This thesis addresses questions regarding the automatic determination of mammogram adequacy with the focus on breast positioning and segmentation evaluation. The goal and, thus, the major technical challenge is to develop algorithms that support fully automatic quality checks. The relevant quality criteria are discussed in Chapter 2. The aim of this discussion is to compile a comprehensive list of necessary criteria that a system for automatic assessment of mammographic adequacy must satisfy. Chapter 3 gives an overview of research performed in computer-aided analysis of mammograms. It also provides basic knowledge about image analysis involved in the research area of computerized mammography in general, and in the papers of this thesis, in particular. In contrast, Chapter 4 describes basic knowledge about segmentation evaluation, which is a highly important component in image analysis. Papers I–IV propose algorithms for measuring the quality of a mammogram according to certain criteria and addresses problems related to them. A method for automatic analysis of the shape of the pectoralis muscle is presented in Paper I. Paper II proposes a fully automatic method for extracting the breast border. A geometric assumption used by radiologists is that the nipple is located at the point on the breast border being furthest away from the pectoralis muscle. This assumption is investigated in Paper III, and a method for automatically restricting the search area is proposed. There has been an increasing need to develop an automated segmentation algorithm for extracting the glandular tissue, where the majority of breast cancer occur. In Paper IV, a novel approach for solving this problem in a robust and accurate way is proposed. Paper V discusses the challenges involved in evaluating the quality of segmentation algorithms based on ground truths provided by an expert panel. A method to relate ground truths provided by several experts to each other in order to establish levels of agreement is proposed. Furthermore, this work is used to develop an algorithm that combines an ensemble of markings into one surrogate ground truth.

Place, publisher, year, edition, pages
Umeå: Datavetenskap, 2008. 90 p.
Report / UMINF, ISSN 0348-0542 ; 08.04
Computer Aided Diagnosis, Quality Assessment, Image Analysis, Ground Truth Assessment, Artificial Intelligence, Measurements, Segmentation Evaluation, Performance Measures, Pattern Recognition, Validation, Decision Support, Medicine
National Category
Computer Science
urn:nbn:se:umu:diva-1657 (URN)978-91-7264-575-2 (ISBN)
Public defence
2008-06-05, MA 121, MIT-huset, Umeå Universitet, 901 87, Umeå, 13:15
Available from: 2008-05-15 Created: 2008-05-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Search in DiVA

By author/editor
Olsén, Christina
By organisation
Department of Computing Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 38 hits
ReferencesLink to record
Permanent link

Direct link