Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biophysical Fingerprinting of Single Bacterial Spores using Laser Raman Optical Tweezers
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics. (The Biophysics and Biophotonics group)ORCID iD: 0000-0002-9835-3263
2020 (English)In: Proceedings Volume 11416, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXI, 2020, SPIE - International Society for Optical Engineering, 2020, article id 1141601Conference paper, Published paper (Refereed)
Abstract [en]

Spore-forming bacteria that cause diseases pose a danger in our society. When in spore form, bacteria can survive high temperatures and resist a plethora of disinfection chemicals. Effective disinfection approaches are thus critical. Since a population of bacterial spores is heterogeneous in many aspects, single spore analyzing methods are suitable when heterogeneous information cannot be neglected. We present in this work a highresolution Laser Raman optical tweezers that can trap single spores and characterize their Raman spectra. We first evaluate our system by measuring Raman spectra of spores, and purified DNA and DPA. Thereafter, we expose Bacillus thuringiensis spores to peracetic acid, chlorine dioxide, and sodium hypochlorite, which are common disinfection chemicals. The data reveals how these agents change the constitutes of a spore over time, thus improving on the mode of action of these disinfection chemicals.

Place, publisher, year, edition, pages
SPIE - International Society for Optical Engineering, 2020. article id 1141601
National Category
Atom and Molecular Physics and Optics Biophysics
Identifiers
URN: urn:nbn:se:umu:diva-170121DOI: 10.1117/12.2558102ISI: 000590002900014Scopus ID: 2-s2.0-85089074190OAI: oai:DiVA.org:umu-170121DiVA, id: diva2:1426661
Conference
SPIE Defense + Commercial Sensing, 2020, Online Only, California, United States, April 27, 2020.
Funder
Swedish Research Council, 2019-04016The Kempe Foundations, JCK-1916.2Available from: 2020-04-27 Created: 2020-04-27 Last updated: 2023-03-23Bibliographically approved
In thesis
1. KNOW YOUR ENEMY: Characterizing Pathogenic Biomaterials Using Laser Tweezers
Open this publication in new window or tab >>KNOW YOUR ENEMY: Characterizing Pathogenic Biomaterials Using Laser Tweezers
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Diseases caused by pathogenic agents such as bacteria and viruses result in devastating costs on personal and societal levels. However, it is not just the emergence of new diseases that is problematic. Antibiotic resistance among bacteria makes uncomplicated infections difficult and lethal. Resilient disease-causing spores spread in hospitals, the food industry, and water supplies requiring effective detection and disinfection methods. Further, we face complex neurological diseases where no effective treatment or diagnostic methods exist. Thus, we must increase our fundamental understanding of these diseases to develop effective diagnostic, detection, disinfection, and treatment methods.

Classically, the methods used for detecting and studying the underlying mechanics of pathogenic agents work on a large scale, measuring the average macroscopic behavior and properties of these pathogens. However, just as with humans, the average behavior is not always representative of individual behavior. Therefore, it is also essential to investigate the characteristics of these pathogens on a single cell or particle level. 

This thesis develops and applies optical techniques to characterize pathogenic biomaterial on a single cell or particle level. At the heart of all these studies is our Optical Tweezers (OT) instrument. OT are a tool that allows us to reach into the microscopic world and interact with it. Finally, by combining OT with other experimental techniques, we can chemically characterize biomaterials and develop assays that mimic different biological settings. Using these tools, we investigate bacterial adhesion, disinfection, and detection of pathogenic spores and proteins.

Hopefully, the insights of these studies can lessen the burden on society caused by diseases by helping others develop effective treatment, diagnostic, detection, and disinfection methods in the future. 

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2022. p. 73
Keywords
Optical Tweezers, Laser Tweezers, Raman Spectroscopy, Bacterial Adhesion, Biophysics, Pili, Bacterial Spores, Endospores, Oocysts, Cryptosporidium, Optics
National Category
Biophysics Atom and Molecular Physics and Optics
Research subject
biology; Physics
Identifiers
urn:nbn:se:umu:diva-192471 (URN)978-91-7855-726-4 (ISBN)978-91-7855-727-1 (ISBN)
Public defence
2022-03-11, NAT.D.410, Naturvetarhuset, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2022-02-18 Created: 2022-02-14 Last updated: 2022-02-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Dahlberg, TobiasMalyshev, DmitryAndersson, Magnus

Search in DiVA

By author/editor
Dahlberg, TobiasMalyshev, DmitryAndersson, Magnus
By organisation
Department of Physics
Atom and Molecular Physics and OpticsBiophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 396 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf