Change search
ReferencesLink to record
Permanent link

Direct link
Low pH Phase Transformation and Proton Promoted Dissolution of Hydrous Manganite (γ-MnOOH)
Umeå University, Faculty of Science and Technology, Chemistry.
(English)Manuscript (Other (popular science, discussion, etc.))
URN: urn:nbn:se:umu:diva-3914OAI: diva2:142821
Available from: 2004-04-29 Created: 2004-04-29 Last updated: 2009-12-03Bibliographically approved
In thesis
1. Chemical Processes at the Water-Manganite (γ-MnOOH) Interface
Open this publication in new window or tab >>Chemical Processes at the Water-Manganite (γ-MnOOH) Interface
2004 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Kemiska Processer vid gränsytan mellan vatten och manganit (γ-MnOOH)
Abstract [en]

The chemistry of mineral surfaces is of great importance in many different areas including natural processes occurring in oceans, rivers, lakes and soils. Manganese (hydr)oxides are one important group to these natural processes, and the thermodynamically most stable trivalent manganese (hydr)oxide, manganit (γ-MnOOH), is studied in this thesis.

This thesis summarises six papers in which the surface chemistry of synthetic manganite has been investigated with respect to surface acid-base properties, dissolution, and adsorption of Cd(II) and the herbicide N-(phosphonomethyl)glycine (glyphosate, PMG). In these papers, a wide range of analysis techniques were used, including X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), potentiometry, electrophoretic mobility measurements and wet chemical techniques, in order to obtain a more complete understanding of the different processes occurring at the manganite-water interface.

From the combined use of these techniques, a 1-pKa acid-base model was established that is valid at pH>6. The model includes a Na+ interaction with the surface:

=MnOH2+½ --> =MnOH-½ + H+ log β0 (intr.) = -8.20 = -pHiep

=MnOH2+½ + Na+ --> =MnOHNa+½ + H+ log β0 (intr.) = -9.64

At pH<6 the manganite crystals dissolve and disproportionate into pyrolusite (β-MnO2) and Mn(II)-ions in solution according to:

2 γ-MnOOH + 2H+ --> β-MnO2 + Mn2+ + 2H2O log K0 = 7.61 ± 0.10

The adsorption and co-adsorption of Cd(II) and glyphosate at the manganite surface was studied at pH>6. Cd(II) adsorption displays an adsorption edge at pH~8.5. Glyphosate adsorbs over the entire pH range, but the adsorption decreases with increasing pH. When the two substances are co-adsorbed, the adsorption of Cd(II) is increased at low pH but decreased at high pH. The adsorption of glyphosate is increased in the entire pH range in the presence of Cd(II). From XPS, FTIR and EXAFS it was found that glyphosate and Cd(II) form inner sphere complexes. The binary Cd(II)-surface complex is bonded by edge sharing of Mn and Cd octahedra on the (010) plane of manganite. Glyphosate forms inner-sphere complexes through an interaction between the phosphonate group and the manganite surface. The largest fraction of this binary glyphosate complex is protonated throughout the pH range. A ternary surface complex is also present, and its structure is explained as type B ternary surface complex (surface-glyphosate-Cd(II)). The chelating rings between the Cd(II) and glyphosate, found in aqueous complexes, are maintained at the surface, and the ternary complex is bound to the surface through the phosphonate group of the ligand.

74 p.
Inorganic chemistry, manganite, γ-MnOOH, mineral surface, acid-base properties, adsorption, Cd(II), N-(phosphonomethyl)glycine, glyphosate, PMG, surface complex, dissolution, disproportionation, XPS, EXAFS, infrared spectroscopy, SEM, AFM, potentiometry, electrophoresis, Oorganisk kemi
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
urn:nbn:se:umu:diva-253 (URN)91-7305-634-0 (ISBN)
Public defence
2004-05-19, KB3B1, KBC, Umeå University, Umeå, 13:00 (English)
Available from: 2004-04-29 Created: 2004-04-29 Last updated: 2009-12-04Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Ramstedt, Madeleine
By organisation

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 51 hits
ReferencesLink to record
Permanent link

Direct link