Change search
ReferencesLink to record
Permanent link

Direct link
Distinct expression ofgelatinase A (MMP-2), collagenase-3 (MMP-13), membrane-type MMP 1 (MT1-MMP), and tissue inhibitor of MMPs type 1 (TIMP-1) mediated by physiological signals during formation and regression of the rat corpus luteum
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
Umeå University, Faculty of Medicine, Department of Clinical Sciences, Obstetrics and Gynaecology.
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
1999 (English)In: Endocrinology, ISSN 0013-7227, E-ISSN 1945-7170, Vol. 140, no 11, 5330-5338 p.Article in journal (Refereed) Published
Abstract [en]

The corpus luteum (CL) is a transient endocrine organ that secretes progesterone to support pregnancy. The CL is formed from an ovulated follicle in a process that involves extensive angiogenesis and tissue remodeling. If fertilization does not occur or implantation is unsuccessful, the CL will undergo regression, which involves extensive tissue degradation. Extracellular proteases, such as serine proteases and matrix metalloproteinases (MMPs), are thought to play important roles in both the formation and regression of the CL. In this study, we have examined the physiological regulation pattern and cellular distribution of messenger RNAs coding for gelatinase A (MMP-2), collagenase-3 (MMP-13), membrane type MMP 1 (MT1-MMP, MMP-14), and the major MMP inhibitor, tissue inhibitor of MMPs type 1 (TIMP-1) in the CL of adult pseudopregnant (psp) rat. Northern blot and in situ hybridization analyses revealed that gelatinase A messenger RNA was mainly expressed during luteal development, indicating that gelatinase A may be associated with the neovascularization and tissue remodeling that takes place during CL formation. Collagenase-3 had a separate expression pattern and was only expressed in the regressing CL, suggesting that this MMP may be related with luteal regression. MT1-MMP that in vitro can activate progelatinase A and procollagenase-3 was constitutively expressed during the formation, function, and regression of the CL and may therefore be involved in the activation of these MMPs. TIMP-1 was induced during both the formation and regression of the CL, suggesting that this inhibitor modulates MMP activity during these processes. To test whether the induction of collagenase-3 and TIMP-1 is coupled with luteal regression, we prolonged the luteal phase by performing hysterectomies, and induced premature luteal regression by treating the pseudopregnant rats with a PGF2alpha analog, cloprostenol. In both treatments, collagenase-3 and TIMP-1 were induced only after the serum level of progesterone had decreased, suggesting that collagenase-3 and TIMP-1 are induced by physiological signals, which initiate functional luteolysis to play a role in tissue degradation during structural luteolysis. In conclusion, our data suggest that gelatinase A, collagenase-3, and MT1-MMP may have separate functions during the CL life span: gelatinase A mainly takes part in CL formation, whereas collagenase-3 mainly takes part in luteal regression; MT1-MMP is constitutively expressed during the CL life span and may therefore serve as an in vivo activator of both gelatinase A and collagenase-3. TIMP-1 is up-regulated both during the formation and regression of the CL and may therefore regulate MMP activity during both processes.

Place, publisher, year, edition, pages
1999. Vol. 140, no 11, 5330-5338 p.
URN: urn:nbn:se:umu:diva-4006PubMedID: 10537164OAI: diva2:142940
Available from: 2004-05-12 Created: 2004-05-12 Last updated: 2010-09-03Bibliographically approved
In thesis
1. Matrix degrading proteases in the ovary: expression and function
Open this publication in new window or tab >>Matrix degrading proteases in the ovary: expression and function
2004 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Extracellular matrix degrading proteases from the plasminogen (plg) activator (PA) and the matrix metalloproteinase (MMP) systems have been implicated as important mediators of ovulation and corpus luteum (CL) formation and regression. The aim of this thesis was to investigate the expression and regulation of PAs and MMPs in the ovary and to examine their functional roles for CL formation and function.

The expression of membrane-type MMP-1 (MT1-MMP) and its substrate gelatinase A (MMP-2) mRNAs was studied during pregnant mare serum gonadotropin (PMSG)/human chorionic gonadotropin (hCG)-induced ovulation in immature rats. These proteases were coordinately regulated so that both were highly expressed in the theca cells of large preovulatory follicles. This suggests that MT1-MMP activates gelatinase A in preovulatory follicles to degrade the follicular wall during ovulation.

In pseudopregnant (psp) rats, MT1-MMP mRNA was expressed in the CL throughout the luteal phase. Tissue inhibitor of metalloproteases type-1 (TIMP-1) mRNA was expressed during CL formation and regression. MMP-2 and collagenase-3 mRNAs were expressed during CL formation and regression, respectively. When the luteal phase was artificially prolonged or shortened, TIMP-1 and collagenase-3 mRNAs were induced only after the serum progesterone levels had decreased, indicating a close association with luteolysis in the rat.

In psp mice, the expression of mRNAs coding for both PAs, seven MMPs, and five protease inhibitors was studied. Most of the studied molecules were coordinately expressed during formation or regression of the CL. However, uPA, MT1-MMP, and TIMP-3 mRNAs were expressed throughout the luteal phase. The role of uPA was examined in psp uPA deficient mice. These mice displayed no abnormalities in luteal function or vascularity. The role of uPA is thus either not essential or can be compensated by other proteases in the absence of uPA.

In order to control the timing of the CL formation, a mouse model for PMSG/hCG-induced CL formation was developed. Five different protocols were evaluated. One of them provided CL that were stable for six days. In that protocol the mice were treated with prolactin (PRL), twice daily from day 2 of CL life onward. The expression of the steroid acute regulatory protein (StAR) mRNA in the psp CL was also characterized to assess its use as a molecular marker for CL development and regression. It was highly expressed in the forming and functional CL and downregulated at a late stage of CL regression.

The functional role of plg and MMPs for CL formation and function was investigated in plg deficient mice treated with the MMP inhibitor galardin (GM6001). Both psp mice and PMSG/hCG +PRL-induced CL formation were used. Several molecular markers for CL development and regression were used to evaluate the health status of the CL. Our data showed that healthy and vascularized CL formed even in plg deficient mice treated with the inhibitor. However, serum progesterone levels were significantly reduced in these mice, an effect that was mainly attributable to the plg deficiency. In conclusion, neither plg nor MMPs, alone or in combination, seem to be essential for the development of a functional CL.

Place, publisher, year, edition, pages
Umeå: Medicinsk biokemi och biofysik, 2004. 56 p.
Umeå University medical dissertations, ISSN 0346-6612 ; 893
Biochemistry, ovary, ovulation, corpus luteum, plasminogen, PA, MMP, rat, mouse, Biokemi
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Research subject
Medical Biochemistry
urn:nbn:se:umu:diva-280 (URN)91-7305-659-6 (ISBN)
Public defence
2004-06-03, N350, Naturvetarhuset, Umeå Universitet, Umeå, 13:00
Available from: 2004-05-12 Created: 2004-05-12Bibliographically approved

Open Access in DiVA

No full text

Other links


Search in DiVA

By author/editor
Liu, KuiOlofsson, JanWahlberg, PatrikNy, Tor
By organisation
Department of Medical Biochemistry and BiophysicsObstetrics and Gynaecology
In the same journal

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link