Change search
ReferencesLink to record
Permanent link

Direct link
Remarkably slow folding of a small protein
Umeå University, Faculty of Science and Technology, Chemistry.
1997 In: FEBS Letters, Vol. 411, 359-364 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
1997. Vol. 411, 359-364 p.
URN: urn:nbn:se:umu:diva-4073OAI: diva2:143033
Available from: 2004-09-06 Created: 2004-09-06Bibliographically approved
In thesis
1. The Folding Energy Landscape of MerP
Open this publication in new window or tab >>The Folding Energy Landscape of MerP
2004 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is based on studies, described in four papers, in which the folding energy landscape of MerP was investigated by various techniques. MerP is a water-soluble 72 amino acid protein with a secondary structure consisting of four anti-parallel β-strands and two α-helices on one side of the sheet in the order β1α1β2β3α2β4.

The first paper describes the use of CD and fluorescence analysis to examine the folding/unfolding process of MerP. From these experiments it was found that the protein folds according to a two-state model in which only the native and unfolded forms are populated without any visible intermediates. With a rate constant of 1.2 s-1, the folding rate was found to be unusually slow for a protein of this size.

The studies presented in the second and third papers were based on measurements of native-state amide proton exchange at different temperatures (Paper II) and GuHCl concentrations (Paper III) in the pre-transitional region. In these studies partially unfolded forms were found for MerP which are essentially unrelated to each other. Thus, in the folding energy landscape of MerP, several intermediates seem to occur on different folding trajectories that are parallel to each other. The slow folding rate of MerP might be coupled to extensive visitation of these conformations. Hydrogen exchange in MerP did also reveal structure-dependent differences in compactness between the denatured states in GuHCl and H2O.

In the last paper multivariate data analysis was applied to 2-dimensional NMR data to detect conformational changes in the structure of MerP induced by GuHCl. From this analysis it was suggested that regions involved in the most flexible part of the protein structure are disrupted at rather low denaturant concentrations (< 2.1 M GuHCl) while the native structures of the most stable parts are still not completely ruptured at 2.9 M GuHCl.

Finally, the stability, kinetics, contact order and folding nuclei of six proteins with similar topology (MerP, U1A, S6, ADA2h, AcP and HPr) were compared. In this analysis it was found that their folding properties are quite diverse, despite their topological similarities, and no general rules that have been formulated yet can adequately predict their folding behaviour.

Place, publisher, year, edition, pages
Umeå: Kemi, 2004. 65 p.
Biochemistry, protein folding and stability, hydrogen exchange, intermediate, partial unfolding, Biokemi
National Category
Biochemistry and Molecular Biology
Research subject
urn:nbn:se:umu:diva-309 (URN)91-7305-710-X (ISBN)
Public defence
Available from: 2004-09-06 Created: 2004-09-06Bibliographically approved

Open Access in DiVA

No full text

Other links
By organisation

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 33 hits
ReferencesLink to record
Permanent link

Direct link