umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modulation of total ozone anomalies in the midlatitude Northern Hemesphere by the Arctic oscillation
Umeå University, Faculty of Science and Technology, Space Science.
2001 In: Izvestia - Atmospheric and Oceanic Physics, ISSN 0001-4338, Vol. 37, no 5, 633-643 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2001. Vol. 37, no 5, 633-643 p.
Identifiers
URN: urn:nbn:se:umu:diva-4694OAI: oai:DiVA.org:umu-4694DiVA: diva2:143905
Available from: 2005-09-22 Created: 2005-09-22Bibliographically approved
In thesis
1. Impact of Rossby waves on ozone distribution and dynamics of the stratosphere and troposphere
Open this publication in new window or tab >>Impact of Rossby waves on ozone distribution and dynamics of the stratosphere and troposphere
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Several physical mechanisms concerning the impact of Rossby waves on ozone distribution and circulation in the stratosphere and troposphere are studied in the thesis.

Summertime total ozone variability over Middle Asia and Northern Scandinavia shows similar wave-like behaviour with typical periods of 10-20 days and amplitudes of 20-50 Dobson units. These variations are caused by eastward travelling Rossby waves in the lower stratosphere. The same mechanism plays the primary role in the formation of an intense low ozone episode over Scandinavia in August 2003. A strong anticyclone was formed in the troposphere over Europe as a part of a Rossby wave train. The anticyclone coincides with a displaced Artic pool of low-ozone air in the stratosphere aloft of the anticyclone. A combination of the two above-mentioned processes results in the total ozone minimum over Northern Europe for summer 2003.

Interannual variability of the atmospheric circulation and total ozone during winter is strongly controlled by the diabatic (Brewer-Dobson) circulation which is driven by upward propagating waves from the troposphere. In the Northern Hemisphere midlatitudes, wintertime total ozone shows antiphase behaviour with the Arctic Oscillation (AO) index on interannual and decadal time-scales. Weaker (stronger) wave activity leads to less (more) northward ozone transport and to a stronger (weaker) AO.

Rossby wave activity occurs as episodic wave events and this wave forcing is not uniform during winter. The November-December stratospheric eddy heat flux is strongly anticorrelated with the January-February eddy heat flux in the midlatitude stratosphere and troposphere. Weaker upward wave fluxes in early winter lead to stronger upward wave fluxes from the troposphere as well as to a stronger polar night jet during midwinter and vice versa. Hence upward wave activity fluxes in early winter define, to a considerable extent, the subsequent evolution of the midwinter circulation in the stratosphere and troposphere.

Publisher
32 p.
Series
IRF Scientific Report, ISSN 0284-1703 ; 285
Keyword
Meteorology, ozone, wave activity, trends, Brewer-Dobson circulation, Rossby waves, Arctic Oscillation, low ozone events, Meteorologi
National Category
Meteorology and Atmospheric Sciences
Research subject
Meteorology
Identifiers
urn:nbn:se:umu:diva-596 (URN)91-7305-946-3 (ISBN)
Public defence
2005-11-04, Aula, Rymdcampus, I10 road, Kiruna, 10:00
Opponent
Supervisors
Available from: 2005-09-22 Created: 2005-09-22Bibliographically approved

Open Access in DiVA

No full text

Other links

http://www.maik.ru/cgi-bin/search.pl?type=abstract&name=physatm&number=5&year=1&page=633
By organisation
Space Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf