umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Methods for estimating uptake and absorbed dose in tumours from I-125 labelled monoclonal antibodies, based on scintigraphic imaging of mice.
Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
1999 (English)In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 38, no 3, 361-365 p.Article in journal (Refereed) Published
Abstract [en]

Monoclonal antibodies for radioimmunotargeting are often tested in tumour bearing nude mice. In vivo determination of the uptake of the monoclonal antibody in the tumour requires quantitative scintigraphy, and this in turn requires an adequate method for subtraction of radiation from the normal tissue. For this reason, two different methods for background subtraction were evaluated, a contralateral background region of interest or an irregular one, surrounding the tumour. A pinhole collimator was used for the scintigraphy and the monoclonal antibodies were labelled with 125I. Furthermore, a method was developed for estimation of the mean absorbed dose in the tumour from these repeated quantitative scintigraphic measurements. This requires that the tumour mass can be accurately estimated in vivo. Finally, the results were compared with in vitro measurements of the uptake.

Place, publisher, year, edition, pages
1999. Vol. 38, no 3, 361-365 p.
Identifiers
URN: urn:nbn:se:umu:diva-4822DOI: 10.1080/028418699431447PubMedID: 10380828OAI: oai:DiVA.org:umu-4822DiVA: diva2:144071
Available from: 2005-11-17 Created: 2005-11-17 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Corrections for improved quantitative accuracy in SPECT and planar scintigraphic imaging
Open this publication in new window or tab >>Corrections for improved quantitative accuracy in SPECT and planar scintigraphic imaging
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A quantitative evaluation of single photon emission computed tomography (SPECT) and planar scintigraphic imaging may be valuable for both diagnostic and therapeutic purposes. For an accurate quantification it is usually necessary to correct for attenuation and scatter and in some cases also for septal penetration. For planar imaging a background correction for the contribution from over- and underlying tissues is needed. In this work a few correction methods have been evaluated and further developed. Much of the work relies on the Monte Carlo method as a tool for evaluation and optimisation.

A method for quantifying the activity of I-125 labelled antibodies in a tumour inoculated in the flank of a mouse, based on planar scintigraphic imaging with a pin-hole collimator, has been developed and two different methods for background subtraction have been compared. The activity estimates of the tumours were compared with measurements in vitro.

The major part of this work is attributed to SPECT. A method for attenuation and scatter correction of brain SPECT based on computed tomography (CT) images of the same patient has been developed, using an attenuation map calculated from the CT image volume. The attenuation map is utilised not only for attenuation correction, but also for scatter correction with transmission dependent convolution subtraction (TDCS). A registration method based on fiducial markers, placed on three chosen points during the SPECT examination, was evaluated.

The scatter correction method, TDCS, was then optimised for regional cerebral blood flow (rCBF) SPECT with Tc-99m, and was also compared with a related method, convolution scatter subtraction (CSS). TDCS has been claimed to be an iterative technique. This requires however some modifications of the method, which have been demonstrated and evaluated for a simulation with a point source.

When the Monte Carlo method is used for evaluation of corrections for septal penetration, it is important that interactions in the collimator are taken into account. A new version of the Monte Carlo program SIMIND with this capability has been evaluated by comparing measured and simulated images and energy spectra. This code was later used for the evaluation of a few different methods for correction of scatter and septal penetration of I-123 brain SPECT. The methods were CSS, TDCS and a method where correction for scatter and septal penetration are included in the iterative reconstruction. This study shows that quantitative accuracy in I-123 brain SPECT benefits from separate modelling of scatter and septal penetration.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2005. 88 p.
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 983
Keyword
Quantitative SPECT, scintigraphic imaging, attenuation correction, scatter correction, collimator-detector response, septal penetration, background correction, Monte Carlo simulation
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:umu:diva-636 (URN)91-7305-938-2 (ISBN)
Public defence
2005-12-09, 244, 7, Norrlands Universitetssjukhus, Umeå, 13:00 (English)
Opponent
Supervisors
Available from: 2005-11-17 Created: 2005-11-17 Last updated: 2012-04-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Larsson, AnneJohansson, LennartRiklund Åhlström, Katrine
By organisation
Radiation PhysicsDiagnostic Radiology
In the same journal
Acta Oncologica

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 109 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf