umu.sePublications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt147",{id:"formSmash:upper:j_idt147",widgetVar:"widget_formSmash_upper_j_idt147",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt148_j_idt150",{id:"formSmash:upper:j_idt148:j_idt150",widgetVar:"widget_formSmash_upper_j_idt148_j_idt150",target:"formSmash:upper:j_idt148:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Ideals and boundaries in Algebras of Holomorphic functionsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2006 (English)Doctoral thesis, monograph (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Umeå universitet , 2006. , 97 p.
##### Series

Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 33
##### Keyword [en]

maximal ideal space, the Gleason problem, generalized Shilov boundaries, Nebenhülle, the Koszul complex, Banach algebras of holomorphic functions
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-675ISBN: 91-7264-011-1OAI: oai:DiVA.org:umu-675DiVA: diva2:144207
##### Public defence

2006-02-17, MIT-huset, MA121, Umeå universitet, UMEÅ, 10:15
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt388",{id:"formSmash:j_idt388",widgetVar:"widget_formSmash_j_idt388",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt394",{id:"formSmash:j_idt394",widgetVar:"widget_formSmash_j_idt394",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt400",{id:"formSmash:j_idt400",widgetVar:"widget_formSmash_j_idt400",multiple:true});
Available from: 2006-01-24 Created: 2006-01-24 Last updated: 2012-10-11Bibliographically approved

We investigate the spectrum of certain Banach algebras. Properties like generators of maximal ideals and generalized Shilov boundaries are studied. In particular we show that if the ∂-equation has solutions in the algebra of bounded functions or continuous functions up to the boundary of a domain D ⊂⊂ C^{n} then every maximal ideal over D is generated by the coordinate functions. This implies that the fibres over D in the spectrum are trivial and that the projection on Cn of the n − 1 order generalized Shilov boundary is contained in the boundary of D.

For a domain D ⊂⊂ C^{n} where the boundary of the Nebenhülle coincide with the smooth strictly pseudoconvex boundary points of D we show that there always exist points p ∈ D such that D has the Gleason property at p.

If the boundary of an open set U is smooth we show that there exist points in U such that the maximal ideals over those points are generated by the coordinate functions.

An example is given of a Riemann domain, Ω, spread over C^{n} where the fibers over a point p ∈ Ω consist of m > n elements but the maximal ideal over p is generated by n functions.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1106",{id:"formSmash:lower:j_idt1106",widgetVar:"widget_formSmash_lower_j_idt1106",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1107_j_idt1109",{id:"formSmash:lower:j_idt1107:j_idt1109",widgetVar:"widget_formSmash_lower_j_idt1107_j_idt1109",target:"formSmash:lower:j_idt1107:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});